statsmodels.emplike.descriptive.DescStatUV.test_var¶
-
DescStatUV.
test_var
(sig2_0, return_weights=False)[source]¶ Returns -2 x log-likelihoog ratio and the p-value for the hypothesized variance
Parameters: sig2_0 : float
Hypothesized variance to be tested
return_weights : bool
If True, returns the weights that maximize the likelihood of observing sig2_0. Default is False
Returns: test_results : tuple
The log-likelihood ratio and the p_value of sig2_0
Examples
>>> import numpy as np >>> import statsmodels.api as sm >>> random_numbers = np.random.standard_normal(1000)*100 >>> el_analysis = sm.emplike.DescStat(random_numbers) >>> hyp_test = el_analysis.test_var(9500)