Source code for statsmodels.base.elastic_net
import numpy as np
from statsmodels.base.model import Results
import statsmodels.base.wrapper as wrap
from statsmodels.tools.decorators import cache_readonly
"""
Elastic net regularization.
Routines for fitting regression models using elastic net
regularization. The elastic net minimizes the objective function
-llf / nobs + alpha((1 - L1_wt) * sum(params**2) / 2 +
L1_wt * sum(abs(params)))
The algorithm implemented here closely follows the implementation in
the R glmnet package, documented here:
http://cran.r-project.org/web/packages/glmnet/index.html
and here:
http://www.jstatsoft.org/v33/i01/paper
This routine should work for any regression model that implements
loglike, score, and hess.
"""
def _gen_npfuncs(k, L1_wt, alpha, loglike_kwds, score_kwds, hess_kwds):
"""
Negative penalized log-likelihood functions.
Returns the negative penalized log-likelihood, its derivative, and
its Hessian. The penalty only includes the smooth (L2) term.
All three functions have argument signature (x, model), where
``x`` is a point in the parameter space and ``model`` is an
arbitrary statsmodels regression model.
"""
def nploglike(params, model):
nobs = model.nobs
pen_llf = alpha[k] * (1 - L1_wt) * np.sum(params**2) / 2
llf = model.loglike(np.r_[params], **loglike_kwds)
return - llf / nobs + pen_llf
def npscore(params, model):
nobs = model.nobs
pen_grad = alpha[k] * (1 - L1_wt) * params
gr = -model.score(np.r_[params], **score_kwds)[0] / nobs
return gr + pen_grad
def nphess(params, model):
nobs = model.nobs
pen_hess = alpha[k] * (1 - L1_wt)
h = -model.hessian(np.r_[params], **hess_kwds)[0, 0] / nobs + pen_hess
return h
return nploglike, npscore, nphess
def fit_elasticnet(model, method="coord_descent", maxiter=100,
alpha=0., L1_wt=1., start_params=None, cnvrg_tol=1e-7,
zero_tol=1e-8, refit=False, check_step=True,
loglike_kwds=None, score_kwds=None, hess_kwds=None):
"""
Return an elastic net regularized fit to a regression model.
Parameters
----------
model : model object
A statsmodels object implementing ``loglike``, ``score``, and
``hessian``.
method : {'coord_descent'}
Only the coordinate descent algorithm is implemented.
maxiter : int
The maximum number of iteration cycles (an iteration cycle
involves running coordinate descent on all variables).
alpha : scalar or array_like
The penalty weight. If a scalar, the same penalty weight
applies to all variables in the model. If a vector, it
must have the same length as `params`, and contains a
penalty weight for each coefficient.
L1_wt : scalar
The fraction of the penalty given to the L1 penalty term.
Must be between 0 and 1 (inclusive). If 0, the fit is
a ridge fit, if 1 it is a lasso fit.
start_params : array_like
Starting values for `params`.
cnvrg_tol : scalar
If `params` changes by less than this amount (in sup-norm)
in one iteration cycle, the algorithm terminates with
convergence.
zero_tol : scalar
Any estimated coefficient smaller than this value is
replaced with zero.
refit : bool
If True, the model is refit using only the variables that have
non-zero coefficients in the regularized fit. The refitted
model is not regularized.
check_step : bool
If True, confirm that the first step is an improvement and search
further if it is not.
loglike_kwds : dict-like or None
Keyword arguments for the log-likelihood function.
score_kwds : dict-like or None
Keyword arguments for the score function.
hess_kwds : dict-like or None
Keyword arguments for the Hessian function.
Returns
-------
Results
A results object.
Notes
-----
The ``elastic net`` penalty is a combination of L1 and L2
penalties.
The function that is minimized is:
-loglike/n + alpha*((1-L1_wt)*|params|_2^2/2 + L1_wt*|params|_1)
where |*|_1 and |*|_2 are the L1 and L2 norms.
The computational approach used here is to obtain a quadratic
approximation to the smooth part of the target function:
-loglike/n + alpha*(1-L1_wt)*|params|_2^2/2
then repeatedly optimize the L1 penalized version of this function
along coordinate axes.
"""
k_exog = model.exog.shape[1]
loglike_kwds = {} if loglike_kwds is None else loglike_kwds
score_kwds = {} if score_kwds is None else score_kwds
hess_kwds = {} if hess_kwds is None else hess_kwds
if np.isscalar(alpha):
alpha = alpha * np.ones(k_exog)
# Define starting params
if start_params is None:
params = np.zeros(k_exog)
else:
params = start_params.copy()
btol = 1e-4
params_zero = np.zeros(len(params), dtype=bool)
init_args = model._get_init_kwds()
# we do not need a copy of init_args b/c get_init_kwds provides new dict
init_args['hasconst'] = False
model_offset = init_args.pop('offset', None)
if 'exposure' in init_args and init_args['exposure'] is not None:
if model_offset is None:
model_offset = np.log(init_args.pop('exposure'))
else:
model_offset += np.log(init_args.pop('exposure'))
fgh_list = [
_gen_npfuncs(k, L1_wt, alpha, loglike_kwds, score_kwds, hess_kwds)
for k in range(k_exog)]
converged = False
for itr in range(maxiter):
# Sweep through the parameters
params_save = params.copy()
for k in range(k_exog):
# Under the active set method, if a parameter becomes
# zero we do not try to change it again.
# TODO : give the user the option to switch this off
if params_zero[k]:
continue
# Set the offset to account for the variables that are
# being held fixed in the current coordinate
# optimization.
params0 = params.copy()
params0[k] = 0
offset = np.dot(model.exog, params0)
if model_offset is not None:
offset += model_offset
# Create a one-variable model for optimization.
model_1var = model.__class__(
model.endog, model.exog[:, k], offset=offset, **init_args)
# Do the one-dimensional optimization.
func, grad, hess = fgh_list[k]
params[k] = _opt_1d(
func, grad, hess, model_1var, params[k], alpha[k]*L1_wt,
tol=btol, check_step=check_step)
# Update the active set
if itr > 0 and np.abs(params[k]) < zero_tol:
params_zero[k] = True
params[k] = 0.
# Check for convergence
pchange = np.max(np.abs(params - params_save))
if pchange < cnvrg_tol:
converged = True
break
# Set approximate zero coefficients to be exactly zero
params[np.abs(params) < zero_tol] = 0
if not refit:
results = RegularizedResults(model, params)
results.converged = converged
return RegularizedResultsWrapper(results)
# Fit the reduced model to get standard errors and other
# post-estimation results.
ii = np.flatnonzero(params)
cov = np.zeros((k_exog, k_exog))
init_args = {k: getattr(model, k, None) for k in model._init_keys}
if len(ii) > 0:
model1 = model.__class__(
model.endog, model.exog[:, ii], **init_args)
rslt = model1.fit()
params[ii] = rslt.params
cov[np.ix_(ii, ii)] = rslt.normalized_cov_params
else:
# Hack: no variables were selected but we need to run fit in
# order to get the correct results class. So just fit a model
# with one variable.
model1 = model.__class__(model.endog, model.exog[:, 0], **init_args)
rslt = model1.fit(maxiter=0)
# fit may return a results or a results wrapper
if issubclass(rslt.__class__, wrap.ResultsWrapper):
klass = rslt._results.__class__
else:
klass = rslt.__class__
# Not all models have a scale
if hasattr(rslt, 'scale'):
scale = rslt.scale
else:
scale = 1.
# The degrees of freedom should reflect the number of parameters
# in the refit model, not including the zeros that are displayed
# to indicate which variables were dropped. See issue #1723 for
# discussion about setting df parameters in model and results
# classes.
p, q = model.df_model, model.df_resid
model.df_model = len(ii)
model.df_resid = model.nobs - model.df_model
# Assuming a standard signature for creating results classes.
refit = klass(model, params, cov, scale=scale)
refit.regularized = True
refit.converged = converged
refit.method = method
refit.fit_history = {'iteration': itr + 1}
# Restore df in model class, see issue #1723 for discussion.
model.df_model, model.df_resid = p, q
return refit
def _opt_1d(func, grad, hess, model, start, L1_wt, tol,
check_step=True):
"""
One-dimensional helper for elastic net.
Parameters
----------
func : function
A smooth function of a single variable to be optimized
with L1 penaty.
grad : function
The gradient of `func`.
hess : function
The Hessian of `func`.
model : statsmodels model
The model being fit.
start : real
A starting value for the function argument
L1_wt : non-negative real
The weight for the L1 penalty function.
tol : non-negative real
A convergence threshold.
check_step : bool
If True, check that the first step is an improvement and
use bisection if it is not. If False, return after the
first step regardless.
Notes
-----
``func``, ``grad``, and ``hess`` have argument signature (x,
model), where ``x`` is a point in the parameter space and
``model`` is the model being fit.
If the log-likelihood for the model is exactly quadratic, the
global minimum is returned in one step. Otherwise numerical
bisection is used.
Returns
-------
The argmin of the objective function.
"""
# Overview:
# We want to minimize L(x) + L1_wt*abs(x), where L() is a smooth
# loss function that includes the log-likelihood and L2 penalty.
# This is a 1-dimensional optimization. If L(x) is exactly
# quadratic we can solve for the argmin exactly. Otherwise we
# approximate L(x) with a quadratic function Q(x) and try to use
# the minimizer of Q(x) + L1_wt*abs(x). But if this yields an
# uphill step for the actual target function L(x) + L1_wt*abs(x),
# then we fall back to a expensive line search. The line search
# is never needed for OLS.
x = start
f = func(x, model)
b = grad(x, model)
c = hess(x, model)
d = b - c*x
# The optimum is achieved by hard thresholding to zero
if L1_wt > np.abs(d):
return 0.
# x + h is the minimizer of the Q(x) + L1_wt*abs(x)
if d >= 0:
h = (L1_wt - b) / c
elif d < 0:
h = -(L1_wt + b) / c
else:
return np.nan
# If the new point is not uphill for the target function, take it
# and return. This check is a bit expensive and un-necessary for
# OLS
if not check_step:
return x + h
f1 = func(x + h, model) + L1_wt*np.abs(x + h)
if f1 <= f + L1_wt*np.abs(x) + 1e-10:
return x + h
# Fallback for models where the loss is not quadratic
from scipy.optimize import brent
x_opt = brent(func, args=(model,), brack=(x-1, x+1), tol=tol)
return x_opt
[docs]
class RegularizedResults(Results):
"""
Results for models estimated using regularization
Parameters
----------
model : Model
The model instance used to estimate the parameters.
params : ndarray
The estimated (regularized) parameters.
"""
def __init__(self, model, params):
super().__init__(model, params)
@cache_readonly
def fittedvalues(self):
"""
The predicted values from the model at the estimated parameters.
"""
return self.model.predict(self.params)
class RegularizedResultsWrapper(wrap.ResultsWrapper):
_attrs = {
'params': 'columns',
'resid': 'rows',
'fittedvalues': 'rows',
}
_wrap_attrs = _attrs
wrap.populate_wrapper(RegularizedResultsWrapper, # noqa:E305
RegularizedResults)
Last update:
Nov 14, 2024