Source code for statsmodels.graphics.agreement
"""
Bland-Altman mean-difference plots
Author: Joses Ho
License: BSD-3
"""
import numpy as np
from . import utils
[docs]
def mean_diff_plot(
m1,
m2,
sd_limit=1.96,
ax=None,
scatter_kwds=None,
mean_line_kwds=None,
limit_lines_kwds=None,
):
"""
Construct a Tukey/Bland-Altman Mean Difference Plot.
Tukey's Mean Difference Plot (also known as a Bland-Altman plot) is a
graphical method to analyze the differences between two methods of
measurement. The mean of the measures is plotted against their difference.
For more information see
https://en.wikipedia.org/wiki/Bland-Altman_plot
Parameters
----------
m1 : array_like
A 1-d array.
m2 : array_like
A 1-d array.
sd_limit : float
The limit of agreements expressed in terms of the standard deviation of
the differences. If `md` is the mean of the differences, and `sd` is
the standard deviation of those differences, then the limits of
agreement that will be plotted are md +/- sd_limit * sd.
The default of 1.96 will produce 95% confidence intervals for the means
of the differences. If sd_limit = 0, no limits will be plotted, and
the ylimit of the plot defaults to 3 standard deviations on either
side of the mean.
ax : AxesSubplot
If `ax` is None, then a figure is created. If an axis instance is
given, the mean difference plot is drawn on the axis.
scatter_kwds : dict
Options to to style the scatter plot. Accepts any keywords for the
matplotlib Axes.scatter plotting method
mean_line_kwds : dict
Options to to style the scatter plot. Accepts any keywords for the
matplotlib Axes.axhline plotting method
limit_lines_kwds : dict
Options to to style the scatter plot. Accepts any keywords for the
matplotlib Axes.axhline plotting method
Returns
-------
Figure
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
References
----------
Bland JM, Altman DG (1986). "Statistical methods for assessing agreement
between two methods of clinical measurement"
Examples
--------
Load relevant libraries.
>>> import statsmodels.api as sm
>>> import numpy as np
>>> import matplotlib.pyplot as plt
Making a mean difference plot.
>>> # Seed the random number generator.
>>> # This ensures that the results below are reproducible.
>>> np.random.seed(9999)
>>> m1 = np.random.random(20)
>>> m2 = np.random.random(20)
>>> f, ax = plt.subplots(1, figsize = (8,5))
>>> sm.graphics.mean_diff_plot(m1, m2, ax = ax)
>>> plt.show()
.. plot:: plots/graphics-mean_diff_plot.py
"""
fig, ax = utils.create_mpl_ax(ax)
if len(m1) != len(m2):
raise ValueError("m1 does not have the same length as m2.")
if sd_limit < 0:
raise ValueError(f"sd_limit ({sd_limit}) is less than 0.")
means = np.mean([m1, m2], axis=0)
diffs = m1 - m2
mean_diff = np.mean(diffs)
std_diff = np.std(diffs, axis=0)
scatter_kwds = scatter_kwds or {}
if "s" not in scatter_kwds:
scatter_kwds["s"] = 20
mean_line_kwds = mean_line_kwds or {}
limit_lines_kwds = limit_lines_kwds or {}
for kwds in [mean_line_kwds, limit_lines_kwds]:
if "color" not in kwds:
kwds["color"] = "gray"
if "linewidth" not in kwds:
kwds["linewidth"] = 1
if "linestyle" not in mean_line_kwds:
kwds["linestyle"] = "--"
if "linestyle" not in limit_lines_kwds:
kwds["linestyle"] = ":"
ax.scatter(means, diffs, **scatter_kwds) # Plot the means against the diffs.
ax.axhline(mean_diff, **mean_line_kwds) # draw mean line.
# Annotate mean line with mean difference.
ax.annotate(
f"mean diff:\n{mean_diff:0.3g}",
xy=(0.99, 0.5),
horizontalalignment="right",
verticalalignment="center",
fontsize=14,
xycoords="axes fraction",
)
if sd_limit > 0:
half_ylim = (1.5 * sd_limit) * std_diff
ax.set_ylim(mean_diff - half_ylim, mean_diff + half_ylim)
limit_of_agreement = sd_limit * std_diff
lower = mean_diff - limit_of_agreement
upper = mean_diff + limit_of_agreement
for j, lim in enumerate([lower, upper]):
ax.axhline(lim, **limit_lines_kwds)
ax.annotate(
f"-{sd_limit} SD: {lower:0.2g}",
xy=(0.99, 0.07),
horizontalalignment="right",
verticalalignment="bottom",
fontsize=14,
xycoords="axes fraction",
)
ax.annotate(
f"+{sd_limit} SD: {upper:0.2g}",
xy=(0.99, 0.92),
horizontalalignment="right",
fontsize=14,
xycoords="axes fraction",
)
elif sd_limit == 0:
half_ylim = 3 * std_diff
ax.set_ylim(mean_diff - half_ylim, mean_diff + half_ylim)
ax.set_ylabel("Difference", fontsize=15)
ax.set_xlabel("Means", fontsize=15)
ax.tick_params(labelsize=13)
fig.tight_layout()
return fig
Last update:
Jan 20, 2025