Source code for statsmodels.graphics.plot_grids

'''create scatterplot with confidence ellipsis

Author: Josef Perktold
License: BSD-3

TODO: update script to use sharex, sharey, and visible=False
    see https://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label
    for sharex I need to have the ax of the last_row when editing the earlier
    rows. Or you axes_grid1, imagegrid
    http://matplotlib.sourceforge.net/mpl_toolkits/axes_grid/users/overview.html
'''


import numpy as np
from scipy import stats

from . import utils

__all__ = ['scatter_ellipse']


def _make_ellipse(mean, cov, ax, level=0.95, color=None):
    """Support function for scatter_ellipse."""
    from matplotlib.patches import Ellipse

    v, w = np.linalg.eigh(cov)
    u = w[0] / np.linalg.norm(w[0])
    angle = np.arctan(u[1]/u[0])
    angle = 180 * angle / np.pi # convert to degrees
    v = 2 * np.sqrt(v * stats.chi2.ppf(level, 2)) #get size corresponding to level
    ell = Ellipse(mean[:2], v[0], v[1], angle=180 + angle, facecolor='none',
                  edgecolor=color,
                  #ls='dashed',  #for debugging
                  lw=1.5)
    ell.set_clip_box(ax.bbox)
    ell.set_alpha(0.5)
    ax.add_artist(ell)


[docs] def scatter_ellipse(data, level=0.9, varnames=None, ell_kwds=None, plot_kwds=None, add_titles=False, keep_ticks=False, fig=None): """Create a grid of scatter plots with confidence ellipses. ell_kwds, plot_kdes not used yet looks ok with 5 or 6 variables, too crowded with 8, too empty with 1 Parameters ---------- data : array_like Input data. level : scalar, optional Default is 0.9. varnames : list[str], optional Variable names. Used for y-axis labels, and if `add_titles` is True also for titles. If not given, integers 1..data.shape[1] are used. ell_kwds : dict, optional UNUSED plot_kwds : dict, optional UNUSED add_titles : bool, optional Whether or not to add titles to each subplot. Default is False. Titles are constructed from `varnames`. keep_ticks : bool, optional If False (default), remove all axis ticks. fig : Figure, optional If given, this figure is simply returned. Otherwise a new figure is created. Returns ------- Figure If `fig` is None, the created figure. Otherwise `fig` itself. Examples -------- >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from statsmodels.graphics.plot_grids import scatter_ellipse >>> data = sm.datasets.statecrime.load_pandas().data >>> fig = plt.figure(figsize=(8,8)) >>> scatter_ellipse(data, varnames=data.columns, fig=fig) >>> plt.show() .. plot:: plots/graphics_plot_grids_scatter_ellipse.py """ fig = utils.create_mpl_fig(fig) import matplotlib.ticker as mticker data = np.asanyarray(data) #needs mean and cov nvars = data.shape[1] if varnames is None: #assuming single digit, nvars<=10 else use 'var%2d' varnames = ['var%d' % i for i in range(nvars)] plot_kwds_ = dict(ls='none', marker='.', color='k', alpha=0.5) if plot_kwds: plot_kwds_.update(plot_kwds) ell_kwds_= dict(color='k') if ell_kwds: ell_kwds_.update(ell_kwds) dmean = data.mean(0) dcov = np.cov(data, rowvar=0) for i in range(1, nvars): #print '---' ax_last=None for j in range(i): #print i,j, i*(nvars-1)+j+1 ax = fig.add_subplot(nvars-1, nvars-1, (i-1)*(nvars-1)+j+1) ## #sharey=ax_last) #sharey does not allow empty ticks? ## if j == 0: ## print 'new ax_last', j ## ax_last = ax ## ax.set_ylabel(varnames[i]) #TODO: make sure we have same xlim and ylim formatter = mticker.FormatStrFormatter('% 3.1f') ax.yaxis.set_major_formatter(formatter) ax.xaxis.set_major_formatter(formatter) idx = np.array([j,i]) ax.plot(*data[:,idx].T, **plot_kwds_) if np.isscalar(level): level = [level] for alpha in level: _make_ellipse(dmean[idx], dcov[idx[:,None], idx], ax, level=alpha, **ell_kwds_) if add_titles: ax.set_title(f'{varnames[i]}-{varnames[j]}') if not ax.get_subplotspec().is_first_col(): if not keep_ticks: ax.set_yticks([]) else: ax.yaxis.set_major_locator(mticker.MaxNLocator(3)) else: ax.set_ylabel(varnames[i]) if ax.get_subplotspec().is_last_row(): ax.set_xlabel(varnames[j]) else: if not keep_ticks: ax.set_xticks([]) else: ax.xaxis.set_major_locator(mticker.MaxNLocator(3)) dcorr = np.corrcoef(data, rowvar=0) dc = dcorr[idx[:,None], idx] xlim = ax.get_xlim() ylim = ax.get_ylim() ## xt = xlim[0] + 0.1 * (xlim[1] - xlim[0]) ## yt = ylim[0] + 0.1 * (ylim[1] - ylim[0]) ## if dc[1,0] < 0 : ## yt = ylim[0] + 0.1 * (ylim[1] - ylim[0]) ## else: ## yt = ylim[1] - 0.2 * (ylim[1] - ylim[0]) yrangeq = ylim[0] + 0.4 * (ylim[1] - ylim[0]) if dc[1,0] < -0.25 or (dc[1,0] < 0.25 and dmean[idx][1] > yrangeq): yt = ylim[0] + 0.1 * (ylim[1] - ylim[0]) else: yt = ylim[1] - 0.2 * (ylim[1] - ylim[0]) xt = xlim[0] + 0.1 * (xlim[1] - xlim[0]) ax.text(xt, yt, '$\\rho=%0.2f$'% dc[1,0]) for ax in fig.axes: if ax.get_subplotspec().is_last_row(): # or ax.is_first_col(): ax.xaxis.set_major_locator(mticker.MaxNLocator(3)) if ax.get_subplotspec().is_first_col(): ax.yaxis.set_major_locator(mticker.MaxNLocator(3)) return fig

Last update: Dec 16, 2024