Source code for statsmodels.nonparametric.bandwidths
import numpy as np
from scipy.stats import scoreatpercentile
from statsmodels.compat.pandas import Substitution
from statsmodels.sandbox.nonparametric import kernels
def _select_sigma(x, percentile=25):
"""
Returns the smaller of std(X, ddof=1) or normalized IQR(X) over axis 0.
References
----------
Silverman (1986) p.47
"""
# normalize = norm.ppf(.75) - norm.ppf(.25)
normalize = 1.349
IQR = (scoreatpercentile(x, 75) - scoreatpercentile(x, 25)) / normalize
std_dev = np.std(x, axis=0, ddof=1)
if IQR > 0:
return np.minimum(std_dev, IQR)
else:
return std_dev
## Univariate Rule of Thumb Bandwidths ##
[docs]
def bw_scott(x, kernel=None):
"""
Scott's Rule of Thumb
Parameters
----------
x : array_like
Array for which to get the bandwidth
kernel : CustomKernel object
Unused
Returns
-------
bw : float
The estimate of the bandwidth
Notes
-----
Returns 1.059 * A * n ** (-1/5.) where ::
A = min(std(x, ddof=1), IQR/1.349)
IQR = np.subtract.reduce(np.percentile(x, [75,25]))
References
----------
Scott, D.W. (1992) Multivariate Density Estimation: Theory, Practice, and
Visualization.
"""
A = _select_sigma(x)
n = len(x)
return 1.059 * A * n ** (-0.2)
[docs]
def bw_silverman(x, kernel=None):
"""
Silverman's Rule of Thumb
Parameters
----------
x : array_like
Array for which to get the bandwidth
kernel : CustomKernel object
Unused
Returns
-------
bw : float
The estimate of the bandwidth
Notes
-----
Returns .9 * A * n ** (-1/5.) where ::
A = min(std(x, ddof=1), IQR/1.349)
IQR = np.subtract.reduce(np.percentile(x, [75,25]))
References
----------
Silverman, B.W. (1986) `Density Estimation.`
"""
A = _select_sigma(x)
n = len(x)
return .9 * A * n ** (-0.2)
def bw_normal_reference(x, kernel=None):
"""
Plug-in bandwidth with kernel specific constant based on normal reference.
This bandwidth minimizes the mean integrated square error if the true
distribution is the normal. This choice is an appropriate bandwidth for
single peaked distributions that are similar to the normal distribution.
Parameters
----------
x : array_like
Array for which to get the bandwidth
kernel : CustomKernel object
Used to calculate the constant for the plug-in bandwidth.
The default is a Gaussian kernel.
Returns
-------
bw : float
The estimate of the bandwidth
Notes
-----
Returns C * A * n ** (-1/5.) where ::
A = min(std(x, ddof=1), IQR/1.349)
IQR = np.subtract.reduce(np.percentile(x, [75,25]))
C = constant from Hansen (2009)
When using a Gaussian kernel this is equivalent to the 'scott' bandwidth up
to two decimal places. This is the accuracy to which the 'scott' constant is
specified.
References
----------
Silverman, B.W. (1986) `Density Estimation.`
Hansen, B.E. (2009) `Lecture Notes on Nonparametrics.`
"""
if kernel is None:
kernel = kernels.Gaussian()
C = kernel.normal_reference_constant
A = _select_sigma(x)
n = len(x)
return C * A * n ** (-0.2)
## Plug-In Methods ##
## Least Squares Cross-Validation ##
## Helper Functions ##
bandwidth_funcs = {
"scott": bw_scott,
"silverman": bw_silverman,
"normal_reference": bw_normal_reference,
}
[docs]
@Substitution(", ".join(sorted(bandwidth_funcs.keys())))
def select_bandwidth(x, bw, kernel):
"""
Selects bandwidth for a selection rule bw
this is a wrapper around existing bandwidth selection rules
Parameters
----------
x : array_like
Array for which to get the bandwidth
bw : str
name of bandwidth selection rule, currently supported are:
%s
kernel : not used yet
Returns
-------
bw : float
The estimate of the bandwidth
"""
bw = bw.lower()
if bw not in bandwidth_funcs:
raise ValueError("Bandwidth %s not understood" % bw)
bandwidth = bandwidth_funcs[bw](x, kernel)
if np.any(bandwidth == 0):
# eventually this can fall back on another selection criterion.
err = "Selected KDE bandwidth is 0. Cannot estimate density. " \
"Either provide the bandwidth during initialization or use " \
"an alternative method."
raise RuntimeError(err)
else:
return bandwidth
Last update:
Jan 20, 2025