Source code for statsmodels.stats.meta_analysis

"""
Created on Thu Apr  2 14:34:25 2020

Author: Josef Perktold
License: BSD-3

"""

import numpy as np
import pandas as pd
from scipy import stats

from statsmodels.stats.base import HolderTuple


[docs] class CombineResults: """Results from combined estimate of means or effect sizes This currently includes intermediate results that might be removed """ def __init__(self, **kwds): self.__dict__.update(kwds) self._ini_keys = list(kwds.keys()) self.df_resid = self.k - 1 # TODO: move to property ? self.sd_eff_w_fe_hksj = np.sqrt(self.var_hksj_fe) self.sd_eff_w_re_hksj = np.sqrt(self.var_hksj_re) # explained variance measures self.h2 = self.q / (self.k - 1) self.i2 = 1 - 1 / self.h2 # memoize ci_samples self.cache_ci = {}
[docs] def conf_int_samples(self, alpha=0.05, use_t=None, nobs=None, ci_func=None): """confidence intervals for the effect size estimate of samples Additional information needs to be provided for confidence intervals that are not based on normal distribution using available variance. This is likely to change in future. Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. nobs : None or float Number of observations used for degrees of freedom computation. Only used if use_t is true. ci_func : None or callable User provided function to compute confidence intervals. This is not used yet and will allow using non-standard confidence intervals. Returns ------- ci_eff : tuple of ndarrays Tuple (ci_low, ci_upp) with confidence interval computed for each sample. Notes ----- CombineResults currently only has information from the combine_effects function, which does not provide details about individual samples. """ # this is a bit messy, we don't have enough information about # computing conf_int already in results for other than normal # TODO: maybe there is a better if (alpha, use_t) in self.cache_ci: return self.cache_ci[(alpha, use_t)] if use_t is None: use_t = self.use_t if ci_func is not None: kwds = {"use_t": use_t} if use_t is not None else {} ci_eff = ci_func(alpha=alpha, **kwds) self.ci_sample_distr = "ci_func" else: if use_t is False: crit = stats.norm.isf(alpha / 2) self.ci_sample_distr = "normal" else: if nobs is not None: df_resid = nobs - 1 crit = stats.t.isf(alpha / 2, df_resid) self.ci_sample_distr = "t" else: msg = ("`use_t=True` requires `nobs` for each sample " "or `ci_func`. Using normal distribution for " "confidence interval of individual samples.") import warnings warnings.warn(msg) crit = stats.norm.isf(alpha / 2) self.ci_sample_distr = "normal" # sgn = np.asarray([-1, 1]) # ci_eff = self.eff + sgn * crit * self.sd_eff ci_low = self.eff - crit * self.sd_eff ci_upp = self.eff + crit * self.sd_eff ci_eff = (ci_low, ci_upp) # if (alpha, use_t) not in self.cache_ci: # not needed self.cache_ci[(alpha, use_t)] = ci_eff return ci_eff
[docs] def conf_int(self, alpha=0.05, use_t=None): """confidence interval for the overall mean estimate Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- ci_eff_fe : tuple of floats Confidence interval for mean effects size based on fixed effects model with scale=1. ci_eff_re : tuple of floats Confidence interval for mean effects size based on random effects model with scale=1 ci_eff_fe_wls : tuple of floats Confidence interval for mean effects size based on fixed effects model with estimated scale corresponding to WLS, ie. HKSJ. ci_eff_re_wls : tuple of floats Confidence interval for mean effects size based on random effects model with estimated scale corresponding to WLS, ie. HKSJ. If random effects method is fully iterated, i.e. Paule-Mandel, then the estimated scale is 1. """ if use_t is None: use_t = self.use_t if use_t is False: crit = stats.norm.isf(alpha / 2) else: crit = stats.t.isf(alpha / 2, self.df_resid) sgn = np.asarray([-1, 1]) m_fe = self.mean_effect_fe m_re = self.mean_effect_re ci_eff_fe = m_fe + sgn * crit * self.sd_eff_w_fe ci_eff_re = m_re + sgn * crit * self.sd_eff_w_re ci_eff_fe_wls = m_fe + sgn * crit * np.sqrt(self.var_hksj_fe) ci_eff_re_wls = m_re + sgn * crit * np.sqrt(self.var_hksj_re) return ci_eff_fe, ci_eff_re, ci_eff_fe_wls, ci_eff_re_wls
[docs] def test_homogeneity(self): """Test whether the means of all samples are the same currently no options, test uses chisquare distribution default might change depending on `use_t` Returns ------- res : HolderTuple instance The results include the following attributes: - statistic : float Test statistic, ``q`` in meta-analysis, this is the pearson_chi2 statistic for the fixed effects model. - pvalue : float P-value based on chisquare distribution. - df : float Degrees of freedom, equal to number of studies or samples minus 1. """ pvalue = stats.chi2.sf(self.q, self.k - 1) res = HolderTuple(statistic=self.q, pvalue=pvalue, df=self.k - 1, distr="chi2") return res
[docs] def summary_array(self, alpha=0.05, use_t=None): """Create array with sample statistics and mean estimates Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- res : ndarray Array with columns ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe","w_re"]. Rows include statistics for samples and estimates of overall mean. column_names : list of str The names for the columns, used when creating summary DataFrame. """ ci_low, ci_upp = self.conf_int_samples(alpha=alpha, use_t=use_t) res = np.column_stack([self.eff, self.sd_eff, ci_low, ci_upp, self.weights_rel_fe, self.weights_rel_re]) ci = self.conf_int(alpha=alpha, use_t=use_t) res_fe = [[self.mean_effect_fe, self.sd_eff_w_fe, ci[0][0], ci[0][1], 1, np.nan]] res_re = [[self.mean_effect_re, self.sd_eff_w_re, ci[1][0], ci[1][1], np.nan, 1]] res_fe_wls = [[self.mean_effect_fe, self.sd_eff_w_fe_hksj, ci[2][0], ci[2][1], 1, np.nan]] res_re_wls = [[self.mean_effect_re, self.sd_eff_w_re_hksj, ci[3][0], ci[3][1], np.nan, 1]] res = np.concatenate([res, res_fe, res_re, res_fe_wls, res_re_wls], axis=0) column_names = ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe", "w_re"] return res, column_names
[docs] def summary_frame(self, alpha=0.05, use_t=None): """Create DataFrame with sample statistics and mean estimates Parameters ---------- alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. Returns ------- res : DataFrame pandas DataFrame instance with columns ['eff', "sd_eff", "ci_low", "ci_upp", "w_fe","w_re"]. Rows include statistics for samples and estimates of overall mean. """ if use_t is None: use_t = self.use_t labels = (list(self.row_names) + ["fixed effect", "random effect", "fixed effect wls", "random effect wls"]) res, col_names = self.summary_array(alpha=alpha, use_t=use_t) results = pd.DataFrame(res, index=labels, columns=col_names) return results
[docs] def plot_forest(self, alpha=0.05, use_t=None, use_exp=False, ax=None, **kwds): """Forest plot with means and confidence intervals Parameters ---------- ax : None or matplotlib axis instance If ax is provided, then the plot will be added to it. alpha : float in (0, 1) Significance level for confidence interval. Nominal coverage is ``1 - alpha``. use_t : None or bool If use_t is None, then the attribute `use_t` determines whether normal or t-distribution is used for confidence intervals. Specifying use_t overrides the attribute. If use_t is false, then confidence intervals are based on the normal distribution. If it is true, then the t-distribution is used. use_exp : bool If `use_exp` is True, then the effect size and confidence limits will be exponentiated. This transform log-odds-ration into odds-ratio, and similarly for risk-ratio. ax : AxesSubplot, optional If given, this axes is used to plot in instead of a new figure being created. kwds : optional keyword arguments Keywords are forwarded to the dot_plot function that creates the plot. Returns ------- fig : Matplotlib figure instance See Also -------- dot_plot """ from statsmodels.graphics.dotplots import dot_plot res_df = self.summary_frame(alpha=alpha, use_t=use_t) if use_exp: res_df = np.exp(res_df[["eff", "ci_low", "ci_upp"]]) hw = np.abs(res_df[["ci_low", "ci_upp"]] - res_df[["eff"]].values) fig = dot_plot(points=res_df["eff"], intervals=hw, lines=res_df.index, line_order=res_df.index, **kwds) return fig
[docs] def effectsize_smd(mean1, sd1, nobs1, mean2, sd2, nobs2): """effect sizes for mean difference for use in meta-analysis mean1, sd1, nobs1 are for treatment mean2, sd2, nobs2 are for control Effect sizes are computed for the mean difference ``mean1 - mean2`` standardized by an estimate of the within variance. This does not have option yet. It uses standardized mean difference with bias correction as effect size. This currently does not use np.asarray, all computations are possible in pandas. Parameters ---------- mean1 : array mean of second sample, treatment groups sd1 : array standard deviation of residuals in treatment groups, within nobs1 : array number of observations in treatment groups mean2, sd2, nobs2 : arrays mean, standard deviation and number of observations of control groups Returns ------- smd_bc : array bias corrected estimate of standardized mean difference var_smdbc : array estimate of variance of smd_bc Notes ----- Status: API will still change. This is currently intended for support of meta-analysis. References ---------- Borenstein, Michael. 2009. Introduction to Meta-Analysis. Chichester: Wiley. Chen, Ding-Geng, and Karl E. Peace. 2013. Applied Meta-Analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton: CRC Press/Taylor & Francis Group. """ # TODO: not used yet, design and options ? # k = len(mean1) # if row_names is None: # row_names = list(range(k)) # crit = stats.norm.isf(alpha / 2) # var_diff_uneq = sd1**2 / nobs1 + sd2**2 / nobs2 var_diff = (sd1**2 * (nobs1 - 1) + sd2**2 * (nobs2 - 1)) / (nobs1 + nobs2 - 2) sd_diff = np.sqrt(var_diff) nobs = nobs1 + nobs2 bias_correction = 1 - 3 / (4 * nobs - 9) smd = (mean1 - mean2) / sd_diff smd_bc = bias_correction * smd var_smdbc = nobs / nobs1 / nobs2 + smd_bc**2 / 2 / (nobs - 3.94) return smd_bc, var_smdbc
[docs] def effectsize_2proportions(count1, nobs1, count2, nobs2, statistic="diff", zero_correction=None, zero_kwds=None): """Effects sizes for two sample binomial proportions Parameters ---------- count1, nobs1, count2, nobs2 : array_like data for two samples statistic : {"diff", "odds-ratio", "risk-ratio", "arcsine"} statistic for the comparison of two proportions Effect sizes for "odds-ratio" and "risk-ratio" are in logarithm. zero_correction : {None, float, "tac", "clip"} Some statistics are not finite when zero counts are in the data. The options to remove zeros are: * float : if zero_correction is a single float, then it will be added to all count (cells) if the sample has any zeros. * "tac" : treatment arm continuity correction see Ruecker et al 2009, section 3.2 * "clip" : clip proportions without adding a value to all cells The clip bounds can be set with zero_kwds["clip_bounds"] zero_kwds : dict additional options to handle zero counts "clip_bounds" tuple, default (1e-6, 1 - 1e-6) if zero_correction="clip" other options not yet implemented Returns ------- effect size : array Effect size for each sample. var_es : array Estimate of variance of the effect size Notes ----- Status: API is experimental, Options for zero handling is incomplete. The names for ``statistics`` keyword can be shortened to "rd", "rr", "or" and "as". The statistics are defined as: - risk difference = p1 - p2 - log risk ratio = log(p1 / p2) - log odds_ratio = log(p1 / (1 - p1) * (1 - p2) / p2) - arcsine-sqrt = arcsin(sqrt(p1)) - arcsin(sqrt(p2)) where p1 and p2 are the estimated proportions in sample 1 (treatment) and sample 2 (control). log-odds-ratio and log-risk-ratio can be transformed back to ``or`` and `rr` using `exp` function. See Also -------- statsmodels.stats.contingency_tables """ if zero_correction is None: cc1 = cc2 = 0 elif zero_correction == "tac": # treatment arm continuity correction Ruecker et al 2009, section 3.2 nobs_t = nobs1 + nobs2 cc1 = nobs2 / nobs_t cc2 = nobs1 / nobs_t elif zero_correction == "clip": clip_bounds = zero_kwds.get("clip_bounds", (1e-6, 1 - 1e-6)) cc1 = cc2 = 0 elif zero_correction: # TODO: check is float_like cc1 = cc2 = zero_correction else: msg = "zero_correction not recognized or supported" raise NotImplementedError(msg) zero_mask1 = (count1 == 0) | (count1 == nobs1) zero_mask2 = (count2 == 0) | (count2 == nobs2) zmask = np.logical_or(zero_mask1, zero_mask2) n1 = nobs1 + (cc1 + cc2) * zmask n2 = nobs2 + (cc1 + cc2) * zmask p1 = (count1 + cc1) / (n1) p2 = (count2 + cc2) / (n2) if zero_correction == "clip": p1 = np.clip(p1, *clip_bounds) p2 = np.clip(p2, *clip_bounds) if statistic in ["diff", "rd"]: rd = p1 - p2 rd_var = p1 * (1 - p1) / n1 + p2 * (1 - p2) / n2 eff = rd var_eff = rd_var elif statistic in ["risk-ratio", "rr"]: # rr = p1 / p2 log_rr = np.log(p1) - np.log(p2) log_rr_var = (1 - p1) / p1 / n1 + (1 - p2) / p2 / n2 eff = log_rr var_eff = log_rr_var elif statistic in ["odds-ratio", "or"]: # or_ = p1 / (1 - p1) * (1 - p2) / p2 log_or = np.log(p1) - np.log(1 - p1) - np.log(p2) + np.log(1 - p2) log_or_var = 1 / (p1 * (1 - p1) * n1) + 1 / (p2 * (1 - p2) * n2) eff = log_or var_eff = log_or_var elif statistic in ["arcsine", "arcsin", "as"]: as_ = np.arcsin(np.sqrt(p1)) - np.arcsin(np.sqrt(p2)) as_var = (1 / n1 + 1 / n2) / 4 eff = as_ var_eff = as_var else: msg = 'statistic not recognized, use one of "rd", "rr", "or", "as"' raise NotImplementedError(msg) return eff, var_eff
[docs] def combine_effects(effect, variance, method_re="iterated", row_names=None, use_t=False, alpha=0.05, **kwds): """combining effect sizes for effect sizes using meta-analysis This currently does not use np.asarray, all computations are possible in pandas. Parameters ---------- effect : array mean of effect size measure for all samples variance : array variance of mean or effect size measure for all samples method_re : {"iterated", "chi2"} method that is use to compute the between random effects variance "iterated" or "pm" uses Paule and Mandel method to iteratively estimate the random effects variance. Options for the iteration can be provided in the ``kwds`` "chi2" or "dl" uses DerSimonian and Laird one-step estimator. row_names : list of strings (optional) names for samples or studies, will be included in results summary and table. alpha : float in (0, 1) significance level, default is 0.05, for the confidence intervals Returns ------- results : CombineResults Contains estimation results and intermediate statistics, and includes a method to return a summary table. Statistics from intermediate calculations might be removed at a later time. Notes ----- Status: Basic functionality is verified, mainly compared to R metafor package. However, API might still change. This computes both fixed effects and random effects estimates. The random effects results depend on the method to estimate the RE variance. Scale estimate In fixed effects models and in random effects models without fully iterated random effects variance, the model will in general not account for all residual variance. Traditional meta-analysis uses a fixed scale equal to 1, that might not produce test statistics and confidence intervals with the correct size. Estimating the scale to account for residual variance often improves the small sample properties of inference and confidence intervals. This adjustment to the standard errors is often referred to as HKSJ method based attributed to Hartung and Knapp and Sidik and Jonkman. However, this is equivalent to estimating the scale in WLS. The results instance includes both, fixed scale and estimated scale versions of standard errors and confidence intervals. References ---------- Borenstein, Michael. 2009. Introduction to Meta-Analysis. Chichester: Wiley. Chen, Ding-Geng, and Karl E. Peace. 2013. Applied Meta-Analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton: CRC Press/Taylor & Francis Group. """ k = len(effect) if row_names is None: row_names = list(range(k)) crit = stats.norm.isf(alpha / 2) # alias for initial version eff = effect var_eff = variance sd_eff = np.sqrt(var_eff) # fixed effects computation weights_fe = 1 / var_eff # no bias correction ? w_total_fe = weights_fe.sum(0) weights_rel_fe = weights_fe / w_total_fe eff_w_fe = weights_rel_fe * eff mean_effect_fe = eff_w_fe.sum() var_eff_w_fe = 1 / w_total_fe sd_eff_w_fe = np.sqrt(var_eff_w_fe) # random effects computation q = (weights_fe * eff**2).sum(0) q -= (weights_fe * eff).sum()**2 / w_total_fe df = k - 1 if method_re.lower() in ["iterated", "pm"]: tau2, _ = _fit_tau_iterative(eff, var_eff, **kwds) elif method_re.lower() in ["chi2", "dl"]: c = w_total_fe - (weights_fe**2).sum() / w_total_fe tau2 = (q - df) / c else: raise ValueError('method_re should be "iterated" or "chi2"') weights_re = 1 / (var_eff + tau2) # no bias_correction ? w_total_re = weights_re.sum(0) weights_rel_re = weights_re / weights_re.sum(0) eff_w_re = weights_rel_re * eff mean_effect_re = eff_w_re.sum() var_eff_w_re = 1 / w_total_re sd_eff_w_re = np.sqrt(var_eff_w_re) # ci_low_eff_re = mean_effect_re - crit * sd_eff_w_re # ci_upp_eff_re = mean_effect_re + crit * sd_eff_w_re scale_hksj_re = (weights_re * (eff - mean_effect_re)**2).sum() / df scale_hksj_fe = (weights_fe * (eff - mean_effect_fe)**2).sum() / df var_hksj_re = (weights_rel_re * (eff - mean_effect_re)**2).sum() / df var_hksj_fe = (weights_rel_fe * (eff - mean_effect_fe)**2).sum() / df res = CombineResults(**locals()) return res
[docs] def _fit_tau_iterative(eff, var_eff, tau2_start=0, atol=1e-5, maxiter=50): """Paule-Mandel iterative estimate of between random effect variance implementation follows DerSimonian and Kacker 2007 Appendix 8 see also Kacker 2004 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes tau2_start : float starting value for iteration atol : float, default: 1e-5 convergence tolerance for absolute value of estimating equation maxiter : int maximum number of iterations Returns ------- tau2 : float estimate of random effects variance tau squared converged : bool True if iteration has converged. """ tau2 = tau2_start k = eff.shape[0] converged = False for i in range(maxiter): w = 1 / (var_eff + tau2) m = w.dot(eff) / w.sum(0) resid_sq = (eff - m)**2 q_w = w.dot(resid_sq) # estimating equation ee = q_w - (k - 1) if ee < 0: tau2 = 0 converged = 0 break if np.allclose(ee, 0, atol=atol): converged = True break # update tau2 delta = ee / (w**2).dot(resid_sq) tau2 += delta return tau2, converged
[docs] def _fit_tau_mm(eff, var_eff, weights): """one-step method of moment estimate of between random effect variance implementation follows Kacker 2004 and DerSimonian and Kacker 2007 eq. 6 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes weights : ndarray weights for estimating overall weighted mean Returns ------- tau2 : float estimate of random effects variance tau squared """ w = weights m = w.dot(eff) / w.sum(0) resid_sq = (eff - m)**2 q_w = w.dot(resid_sq) w_t = w.sum() expect = w.dot(var_eff) - (w**2).dot(var_eff) / w_t denom = w_t - (w**2).sum() / w_t # moment estimate from estimating equation tau2 = (q_w - expect) / denom return tau2
[docs] def _fit_tau_iter_mm(eff, var_eff, tau2_start=0, atol=1e-5, maxiter=50): """iterated method of moment estimate of between random effect variance This repeatedly estimates tau, updating weights in each iteration see two-step estimators in DerSimonian and Kacker 2007 Parameters ---------- eff : ndarray effect sizes var_eff : ndarray variance of effect sizes tau2_start : float starting value for iteration atol : float, default: 1e-5 convergence tolerance for change in tau2 estimate between iterations maxiter : int maximum number of iterations Returns ------- tau2 : float estimate of random effects variance tau squared converged : bool True if iteration has converged. """ tau2 = tau2_start converged = False for _ in range(maxiter): w = 1 / (var_eff + tau2) tau2_new = _fit_tau_mm(eff, var_eff, w) tau2_new = max(0, tau2_new) delta = tau2_new - tau2 if np.allclose(delta, 0, atol=atol): converged = True break tau2 = tau2_new return tau2, converged

Last update: Dec 16, 2024