Source code for statsmodels.tools.eval_measures

"""some measures for evaluation of prediction, tests and model selection

Created on Tue Nov 08 15:23:20 2011
Updated on Wed Jun 03 10:42:20 2020

Authors: Josef Perktold & Peter Prescott
License: BSD-3

"""
import numpy as np

from statsmodels.tools.validation import array_like


[docs] def mse(x1, x2, axis=0): """mean squared error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- mse : ndarray or float mean squared error along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass, for example numpy matrices will silently produce an incorrect result. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.mean((x1 - x2) ** 2, axis=axis)
[docs] def rmse(x1, x2, axis=0): """root mean squared error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- rmse : ndarray or float root mean squared error along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass, for example numpy matrices will silently produce an incorrect result. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.sqrt(mse(x1, x2, axis=axis))
[docs] def rmspe(y, y_hat, axis=0, zeros=np.nan): """ Root Mean Squared Percentage Error Parameters ---------- y : array_like The actual value. y_hat : array_like The predicted value. axis : int Axis along which the summary statistic is calculated zeros : float Value to assign to error where y is zero Returns ------- rmspe : ndarray or float Root Mean Squared Percentage Error along given axis. """ y_hat = np.asarray(y_hat) y = np.asarray(y) error = y - y_hat loc = y != 0 loc = loc.ravel() percentage_error = np.full_like(error, zeros) percentage_error.flat[loc] = error.flat[loc] / y.flat[loc] mspe = np.nanmean(percentage_error ** 2, axis=axis) * 100 return np.sqrt(mspe)
[docs] def maxabs(x1, x2, axis=0): """maximum absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- maxabs : ndarray or float maximum absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.max(np.abs(x1 - x2), axis=axis)
[docs] def meanabs(x1, x2, axis=0): """mean absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- meanabs : ndarray or float mean absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.mean(np.abs(x1 - x2), axis=axis)
[docs] def medianabs(x1, x2, axis=0): """median absolute error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- medianabs : ndarray or float median absolute difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.median(np.abs(x1 - x2), axis=axis)
[docs] def bias(x1, x2, axis=0): """bias, mean error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- bias : ndarray or float bias, or mean difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.mean(x1 - x2, axis=axis)
[docs] def medianbias(x1, x2, axis=0): """median bias, median error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- medianbias : ndarray or float median bias, or median difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.median(x1 - x2, axis=axis)
[docs] def vare(x1, x2, ddof=0, axis=0): """variance of error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- vare : ndarray or float variance of difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.var(x1 - x2, ddof=ddof, axis=axis)
[docs] def stde(x1, x2, ddof=0, axis=0): """standard deviation of error Parameters ---------- x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns ------- stde : ndarray or float standard deviation of difference along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they need to broadcast. This uses ``numpy.asanyarray`` to convert the input. Whether this is the desired result or not depends on the array subclass. """ x1 = np.asanyarray(x1) x2 = np.asanyarray(x2) return np.std(x1 - x2, ddof=ddof, axis=axis)
[docs] def iqr(x1, x2, axis=0): """ Interquartile range of error Parameters ---------- x1 : array_like One of the inputs into the IQR calculation. x2 : array_like The other input into the IQR calculation. axis : {None, int} axis along which the summary statistic is calculated Returns ------- irq : {float, ndarray} Interquartile range along given axis. Notes ----- If ``x1`` and ``x2`` have different shapes, then they must broadcast. """ x1 = array_like(x1, "x1", dtype=None, ndim=None) x2 = array_like(x2, "x1", dtype=None, ndim=None) if axis is None: x1 = x1.ravel() x2 = x2.ravel() axis = 0 xdiff = np.sort(x1 - x2, axis=axis) nobs = x1.shape[axis] idx = np.round((nobs - 1) * np.array([0.25, 0.75])).astype(int) sl = [slice(None)] * xdiff.ndim sl[axis] = idx iqr = np.diff(xdiff[tuple(sl)], axis=axis) iqr = np.squeeze(iqr) # drop reduced dimension return iqr
# Information Criteria # ---------------------
[docs] def aic(llf, nobs, df_modelwc): """ Akaike information criterion Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aic : float information criterion References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion """ return -2.0 * llf + 2.0 * df_modelwc
[docs] def aicc(llf, nobs, df_modelwc): """ Akaike information criterion (AIC) with small sample correction Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aicc : float information criterion References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion#AICc Notes ----- Returns +inf if the effective degrees of freedom, defined as ``nobs - df_modelwc - 1.0``, is <= 0. """ dof_eff = nobs - df_modelwc - 1.0 if dof_eff > 0: return -2.0 * llf + 2.0 * df_modelwc * nobs / dof_eff else: return np.inf
[docs] def bic(llf, nobs, df_modelwc): """ Bayesian information criterion (BIC) or Schwarz criterion Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- bic : float information criterion References ---------- https://en.wikipedia.org/wiki/Bayesian_information_criterion """ return -2.0 * llf + np.log(nobs) * df_modelwc
[docs] def hqic(llf, nobs, df_modelwc): """ Hannan-Quinn information criterion (HQC) Parameters ---------- llf : {float, array_like} value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- hqic : float information criterion References ---------- Wikipedia does not say much """ return -2.0 * llf + 2 * np.log(np.log(nobs)) * df_modelwc
# IC based on residual sigma
[docs] def aic_sigma(sigma2, nobs, df_modelwc, islog=False): r""" Akaike information criterion Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aic : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. The information criteria should be used to compare only comparable models. For example, AIC is defined in terms of the loglikelihood as :math:`-2 llf + 2 k` in terms of :math:`\hat{\sigma}^2` :math:`log(\hat{\sigma}^2) + 2 k / n` in terms of the determinant of :math:`\hat{\Sigma}` :math:`log(\|\hat{\Sigma}\|) + 2 k / n` Note: In our definition we do not divide by n in the log-likelihood version. TODO: Latex math reference for example lecture notes by Herman Bierens See Also -------- References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion """ if not islog: sigma2 = np.log(sigma2) return sigma2 + aic(0, nobs, df_modelwc) / nobs
[docs] def aicc_sigma(sigma2, nobs, df_modelwc, islog=False): """ Akaike information criterion (AIC) with small sample correction Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- aicc : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- https://en.wikipedia.org/wiki/Akaike_information_criterion#AICc """ if not islog: sigma2 = np.log(sigma2) return sigma2 + aicc(0, nobs, df_modelwc) / nobs
[docs] def bic_sigma(sigma2, nobs, df_modelwc, islog=False): """Bayesian information criterion (BIC) or Schwarz criterion Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- bic : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- https://en.wikipedia.org/wiki/Bayesian_information_criterion """ if not islog: sigma2 = np.log(sigma2) return sigma2 + bic(0, nobs, df_modelwc) / nobs
[docs] def hqic_sigma(sigma2, nobs, df_modelwc, islog=False): """Hannan-Quinn information criterion (HQC) Parameters ---------- sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns ------- hqic : float information criterion Notes ----- A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models. References ---------- xxx """ if not islog: sigma2 = np.log(sigma2) return sigma2 + hqic(0, nobs, df_modelwc) / nobs
# from var_model.py, VAR only? separates neqs and k_vars per equation # def fpe_sigma(): # ((nobs + self.df_model) / self.df_resid) ** neqs * np.exp(ld) __all__ = [ maxabs, meanabs, medianabs, medianbias, mse, rmse, rmspe, stde, vare, aic, aic_sigma, aicc, aicc_sigma, bias, bic, bic_sigma, hqic, hqic_sigma, iqr, ]

Last update: Nov 14, 2024