Source code for statsmodels.tsa.filters.cf_filter

import numpy as np

from statsmodels.tools.validation import PandasWrapper, array_like

# the data is sampled quarterly, so cut-off frequency of 18

# Wn is normalized cut-off freq
#Cutoff frequency is that frequency where the magnitude response of the filter
# is sqrt(1/2.). For butter, the normalized cutoff frequency Wn must be a
# number between  0 and 1, where 1 corresponds to the Nyquist frequency, p
# radians per sample.


# NOTE: uses a loop, could probably be sped-up for very large datasets
[docs] def cffilter(x, low=6, high=32, drift=True): """ Christiano Fitzgerald asymmetric, random walk filter. Parameters ---------- x : array_like The 1 or 2d array to filter. If 2d, variables are assumed to be in columns. low : float Minimum period of oscillations. Features below low periodicity are filtered out. Default is 6 for quarterly data, giving a 1.5 year periodicity. high : float Maximum period of oscillations. Features above high periodicity are filtered out. Default is 32 for quarterly data, giving an 8 year periodicity. drift : bool Whether or not to remove a trend from the data. The trend is estimated as np.arange(nobs)*(x[-1] - x[0])/(len(x)-1). Returns ------- cycle : array_like The features of x between the periodicities low and high. trend : array_like The trend in the data with the cycles removed. See Also -------- statsmodels.tsa.filters.bk_filter.bkfilter Baxter-King filter. statsmodels.tsa.filters.bk_filter.hpfilter Hodrick-Prescott filter. statsmodels.tsa.seasonal.seasonal_decompose Decompose a time series using moving averages. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- See the notebook `Time Series Filters <../examples/notebooks/generated/tsa_filters.html>`__ for an overview. Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.macrodata.load_pandas().data >>> index = pd.DatetimeIndex(start='1959Q1', end='2009Q4', freq='Q') >>> dta.set_index(index, inplace=True) >>> cf_cycles, cf_trend = sm.tsa.filters.cffilter(dta[["infl", "unemp"]]) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> cf_cycles.plot(ax=ax, style=['r--', 'b-']) >>> plt.show() .. plot:: plots/cff_plot.py """ #TODO: cythonize/vectorize loop?, add ability for symmetric filter, # and estimates of theta other than random walk. if low < 2: raise ValueError("low must be >= 2") pw = PandasWrapper(x) x = array_like(x, 'x', ndim=2) nobs, nseries = x.shape a = 2*np.pi/high b = 2*np.pi/low if drift: # get drift adjusted series x = x - np.arange(nobs)[:, None] * (x[-1] - x[0]) / (nobs - 1) J = np.arange(1, nobs + 1) Bj = (np.sin(b * J) - np.sin(a * J)) / (np.pi * J) B0 = (b - a) / np.pi Bj = np.r_[B0, Bj][:, None] y = np.zeros((nobs, nseries)) for i in range(nobs): B = -.5 * Bj[0] - np.sum(Bj[1:-i - 2]) A = -Bj[0] - np.sum(Bj[1:-i - 2]) - np.sum(Bj[1:i]) - B y[i] = (Bj[0] * x[i] + np.dot(Bj[1:-i - 2].T, x[i + 1:-1]) + B * x[-1] + np.dot(Bj[1:i].T, x[1:i][::-1]) + A * x[0]) y = y.squeeze() cycle, trend = y.squeeze(), x.squeeze() - y return pw.wrap(cycle, append='cycle'), pw.wrap(trend, append='trend')
if __name__ == "__main__": import statsmodels as sm dta = sm.datasets.macrodata.load().data[['infl','tbilrate']].view((float,2))[1:] cycle, trend = cffilter(dta, 6, 32, drift=True) dta = sm.datasets.macrodata.load().data['tbilrate'][1:] cycle2, trend2 = cffilter(dta, 6, 32, drift=True)

Last update: Dec 23, 2024