Source code for statsmodels.tsa.forecasting.stl
from statsmodels.compat.pandas import Substitution, is_int_index
import datetime as dt
from typing import Any, Optional, Union
import numpy as np
import pandas as pd
from statsmodels.base.data import PandasData
from statsmodels.iolib.summary import SimpleTable, Summary
from statsmodels.tools.docstring import Docstring, Parameter, indent
from statsmodels.tsa.base.prediction import PredictionResults
from statsmodels.tsa.base.tsa_model import get_index_loc, get_prediction_index
from statsmodels.tsa.seasonal import STL, DecomposeResult
from statsmodels.tsa.statespace.kalman_filter import _check_dynamic
DateLike = Union[int, str, dt.datetime, pd.Timestamp, np.datetime64]
ds = Docstring(STL.__doc__)
ds.insert_parameters(
"endog",
Parameter(
"model",
"Model",
[
"The model used to forecast endog after the seasonality has been "
"removed using STL"
],
),
)
ds.insert_parameters(
"model",
Parameter(
"model_kwargs",
"dict[str, Any]",
[
"Any additional arguments needed to initialized the model using "
"the residuals produced by subtracting the seasonality."
],
),
)
_stl_forecast_params = ds.extract_parameters(
[
"endog",
"model",
"model_kwargs",
"period",
"seasonal",
"trend",
"low_pass",
"seasonal_deg",
"trend_deg",
"low_pass_deg",
"robust",
"seasonal_jump",
"trend_jump",
"low_pass_jump",
]
)
ds = Docstring(STL.fit.__doc__)
_fit_params = ds.extract_parameters(["inner_iter", "outer_iter"])
[docs]
@Substitution(stl_forecast_params=indent(_stl_forecast_params, " "))
class STLForecast:
r"""
Model-based forecasting using STL to remove seasonality
Forecasts are produced by first subtracting the seasonality
estimated using STL, then forecasting the deseasonalized
data using a time-series model, for example, ARIMA.
Parameters
----------
%(stl_forecast_params)s
See Also
--------
statsmodels.tsa.arima.model.ARIMA
ARIMA modeling.
statsmodels.tsa.ar_model.AutoReg
Autoregressive modeling supporting complex deterministics.
statsmodels.tsa.exponential_smoothing.ets.ETSModel
Additive and multiplicative exponential smoothing with trend.
statsmodels.tsa.statespace.exponential_smoothing.ExponentialSmoothing
Additive exponential smoothing with trend.
Notes
-----
If :math:`\hat{S}_t` is the seasonal component, then the deseasonalize
series is constructed as
.. math::
Y_t - \hat{S}_t
The trend component is not removed, and so the time series model should
be capable of adequately fitting and forecasting the trend if present. The
out-of-sample forecasts of the seasonal component are produced as
.. math::
\hat{S}_{T + h} = \hat{S}_{T - k}
where :math:`k = m - h + m \lfloor (h-1)/m \rfloor` tracks the period
offset in the full cycle of 1, 2, ..., m where m is the period length.
This class is mostly a convenience wrapper around ``STL`` and a
user-specified model. The model is assumed to follow the standard
statsmodels pattern:
* ``fit`` is used to estimate parameters and returns a results instance,
``results``.
* ``results`` must exposes a method ``forecast(steps, **kwargs)`` that
produces out-of-sample forecasts.
* ``results`` may also exposes a method ``get_prediction`` that produces
both in- and out-of-sample predictions.
See the notebook `Seasonal Decomposition
<../examples/notebooks/generated/stl_decomposition.html>`__ for an
overview.
Examples
--------
>>> import numpy as np
>>> import pandas as pd
>>> from statsmodels.tsa.api import STLForecast
>>> from statsmodels.tsa.arima.model import ARIMA
>>> from statsmodels.datasets import macrodata
>>> ds = macrodata.load_pandas()
>>> data = np.log(ds.data.m1)
>>> base_date = f"{int(ds.data.year[0])}-{3*int(ds.data.quarter[0])+1}-1"
>>> data.index = pd.date_range(base_date, periods=data.shape[0], freq="QS")
Generate forecasts from an ARIMA
>>> stlf = STLForecast(data, ARIMA, model_kwargs={"order": (2, 1, 0)})
>>> res = stlf.fit()
>>> forecasts = res.forecast(12)
Generate forecasts from an Exponential Smoothing model with trend
>>> from statsmodels.tsa.statespace import exponential_smoothing
>>> ES = exponential_smoothing.ExponentialSmoothing
>>> config = {"trend": True}
>>> stlf = STLForecast(data, ES, model_kwargs=config)
>>> res = stlf.fit()
>>> forecasts = res.forecast(12)
"""
def __init__(
self,
endog,
model,
*,
model_kwargs=None,
period=None,
seasonal=7,
trend=None,
low_pass=None,
seasonal_deg=1,
trend_deg=1,
low_pass_deg=1,
robust=False,
seasonal_jump=1,
trend_jump=1,
low_pass_jump=1,
):
self._endog = endog
self._stl_kwargs = dict(
period=period,
seasonal=seasonal,
trend=trend,
low_pass=low_pass,
seasonal_deg=seasonal_deg,
trend_deg=trend_deg,
low_pass_deg=low_pass_deg,
robust=robust,
seasonal_jump=seasonal_jump,
trend_jump=trend_jump,
low_pass_jump=low_pass_jump,
)
self._model = model
self._model_kwargs = {} if model_kwargs is None else model_kwargs
if not hasattr(model, "fit"):
raise AttributeError("model must expose a ``fit`` method.")
[docs]
@Substitution(fit_params=indent(_fit_params, " " * 8))
def fit(self, *, inner_iter=None, outer_iter=None, fit_kwargs=None):
"""
Estimate STL and forecasting model parameters.
Parameters
----------\n%(fit_params)s
fit_kwargs : dict[str, Any]
Any additional keyword arguments to pass to ``model``'s ``fit``
method when estimating the model on the decomposed residuals.
Returns
-------
STLForecastResults
Results with forecasting methods.
"""
fit_kwargs = {} if fit_kwargs is None else fit_kwargs
stl = STL(self._endog, **self._stl_kwargs)
stl_fit: DecomposeResult = stl.fit(
inner_iter=inner_iter, outer_iter=outer_iter
)
model_endog = stl_fit.trend + stl_fit.resid
mod = self._model(model_endog, **self._model_kwargs)
res = mod.fit(**fit_kwargs)
if not hasattr(res, "forecast"):
raise AttributeError(
"The model's result must expose a ``forecast`` method."
)
return STLForecastResults(stl, stl_fit, mod, res, self._endog)
[docs]
class STLForecastResults:
"""
Results for forecasting using STL to remove seasonality
Parameters
----------
stl : STL
The STL instance used to decompose the data.
result : DecomposeResult
The result of applying STL to the data.
model : Model
The time series model used to model the non-seasonal dynamics.
model_result : Results
Model results instance supporting, at a minimum, ``forecast``.
"""
def __init__(
self, stl: STL, result: DecomposeResult, model, model_result, endog
) -> None:
self._stl = stl
self._result = result
self._model = model
self._model_result = model_result
self._endog = np.asarray(endog)
self._nobs = self._endog.shape[0]
self._index = getattr(endog, "index", pd.RangeIndex(self._nobs))
if not (
isinstance(self._index, (pd.DatetimeIndex, pd.PeriodIndex))
or is_int_index(self._index)
):
try:
self._index = pd.to_datetime(self._index)
except ValueError:
self._index = pd.RangeIndex(self._nobs)
@property
def period(self) -> int:
"""The period of the seasonal component"""
return self._stl.period
@property
def stl(self) -> STL:
"""The STL instance used to decompose the time series"""
return self._stl
@property
def result(self) -> DecomposeResult:
"""The result of applying STL to the data"""
return self._result
@property
def model(self) -> Any:
"""The model fit to the additively deseasonalized data"""
return self._model
@property
def model_result(self) -> Any:
"""The result class from the estimated model"""
return self._model_result
[docs]
def summary(self) -> Summary:
"""
Summary of both the STL decomposition and the model fit.
Returns
-------
Summary
The summary of the model fit and the STL decomposition.
Notes
-----
Requires that the model's result class supports ``summary`` and
returns a ``Summary`` object.
"""
if not hasattr(self._model_result, "summary"):
raise AttributeError(
"The model result does not have a summary attribute."
)
summary: Summary = self._model_result.summary()
if not isinstance(summary, Summary):
raise TypeError(
"The model result's summary is not a Summary object."
)
summary.tables[0].title = (
"STL Decomposition and " + summary.tables[0].title
)
config = self._stl.config
left_keys = ("period", "seasonal", "robust")
left_data = []
left_stubs = []
right_data = []
right_stubs = []
for key in config:
new = key.capitalize()
new = new.replace("_", " ")
if new in ("Trend", "Low Pass"):
new += " Length"
is_left = any(key.startswith(val) for val in left_keys)
new += ":"
stub = f"{new:<23s}"
val = f"{str(config[key]):>13s}"
if is_left:
left_stubs.append(stub)
left_data.append([val])
else:
right_stubs.append(" " * 6 + stub)
right_data.append([val])
tab = SimpleTable(
left_data, stubs=tuple(left_stubs), title="STL Configuration"
)
tab.extend_right(SimpleTable(right_data, stubs=right_stubs))
summary.tables.append(tab)
return summary
def _get_seasonal_prediction(
self,
start: Optional[DateLike],
end: Optional[DateLike],
dynamic: Union[bool, DateLike],
) -> np.ndarray:
"""
Get STLs seasonal in- and out-of-sample predictions
Parameters
----------
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
dynamic : bool, int, str, or datetime, optional
Integer offset relative to `start` at which to begin dynamic
prediction. Can also be an absolute date string to parse or a
datetime type (these are not interpreted as offsets).
Prior to this observation, true endogenous values will be used for
prediction; starting with this observation and continuing through
the end of prediction, forecasted endogenous values will be used
instead.
Returns
-------
ndarray
Array containing the seasibak predictions.
"""
data = PandasData(pd.Series(self._endog), index=self._index)
if start is None:
start = 0
(start, end, out_of_sample, prediction_index) = get_prediction_index(
start, end, self._nobs, self._index, data=data
)
if isinstance(dynamic, (str, dt.datetime, pd.Timestamp)):
dynamic, _, _ = get_index_loc(dynamic, self._index)
dynamic = dynamic - start
elif dynamic is True:
dynamic = 0
elif dynamic is False:
# If `dynamic=False`, then no dynamic predictions
dynamic = None
nobs = self._nobs
dynamic, _ = _check_dynamic(dynamic, start, end, nobs)
in_sample_end = end + 1 if dynamic is None else dynamic
seasonal = np.asarray(self._result.seasonal)
predictions = seasonal[start:in_sample_end]
oos = np.empty((0,))
if dynamic is not None:
num = out_of_sample + end + 1 - dynamic
oos = self._seasonal_forecast(num, None, offset=dynamic)
elif out_of_sample:
oos = self._seasonal_forecast(out_of_sample, None)
oos_start = max(start - nobs, 0)
oos = oos[oos_start:]
predictions = np.r_[predictions, oos]
return predictions
def _seasonal_forecast(
self, steps: int, index: Optional[pd.Index], offset=None
) -> Union[pd.Series, np.ndarray]:
"""
Get the seasonal component of the forecast
Parameters
----------
steps : int
The number of steps required.
index : pd.Index
A pandas index to use. If None, returns an ndarray.
offset : int
The index of the first out-of-sample observation. If None, uses
nobs.
Returns
-------
seasonal : {ndarray, Series}
The seasonal component.
"""
period = self.period
seasonal = np.asarray(self._result.seasonal)
offset = self._nobs if offset is None else offset
seasonal = seasonal[offset - period : offset]
seasonal = np.tile(seasonal, steps // period + ((steps % period) != 0))
seasonal = seasonal[:steps]
if index is not None:
seasonal = pd.Series(seasonal, index=index)
return seasonal
[docs]
def forecast(
self, steps: int = 1, **kwargs: dict[str, Any]
) -> Union[np.ndarray, pd.Series]:
"""
Out-of-sample forecasts
Parameters
----------
steps : int, str, or datetime, optional
If an integer, the number of steps to forecast from the end of the
sample. Can also be a date string to parse or a datetime type.
However, if the dates index does not have a fixed frequency, steps
must be an integer. Default
**kwargs
Additional arguments may required for forecasting beyond the end
of the sample. These arguments are passed into the time series
model results' ``forecast`` method.
Returns
-------
forecast : {ndarray, Series}
Out of sample forecasts
"""
forecast = self._model_result.forecast(steps=steps, **kwargs)
index = forecast.index if isinstance(forecast, pd.Series) else None
return forecast + self._seasonal_forecast(steps, index)
[docs]
def get_prediction(
self,
start: Optional[DateLike] = None,
end: Optional[DateLike] = None,
dynamic: Union[bool, DateLike] = False,
**kwargs: dict[str, Any],
):
"""
In-sample prediction and out-of-sample forecasting
Parameters
----------
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
dynamic : bool, int, str, or datetime, optional
Integer offset relative to `start` at which to begin dynamic
prediction. Can also be an absolute date string to parse or a
datetime type (these are not interpreted as offsets).
Prior to this observation, true endogenous values will be used for
prediction; starting with this observation and continuing through
the end of prediction, forecasted endogenous values will be used
instead.
**kwargs
Additional arguments may required for forecasting beyond the end
of the sample. These arguments are passed into the time series
model results' ``get_prediction`` method.
Returns
-------
PredictionResults
PredictionResults instance containing in-sample predictions,
out-of-sample forecasts, and prediction intervals.
"""
pred = self._model_result.get_prediction(
start=start, end=end, dynamic=dynamic, **kwargs
)
seasonal_prediction = self._get_seasonal_prediction(
start, end, dynamic
)
mean = pred.predicted_mean + seasonal_prediction
try:
var_pred_mean = pred.var_pred_mean
except (AttributeError, NotImplementedError):
# Allow models that do not return var_pred_mean
import warnings
warnings.warn(
"The variance of the predicted mean is not available using "
f"the {self.model.__class__.__name__} model class.",
UserWarning,
stacklevel=2,
)
var_pred_mean = np.nan + mean.copy()
return PredictionResults(
mean, var_pred_mean, dist="norm", row_labels=pred.row_labels
)
Last update:
Jan 25, 2025