Source code for statsmodels.tsa.statespace.varmax

"""
Vector Autoregressive Moving Average with eXogenous regressors model

Author: Chad Fulton
License: Simplified-BSD
"""

import contextlib
from warnings import warn

import pandas as pd
import numpy as np

from statsmodels.compat.pandas import Appender
from statsmodels.tools.tools import Bunch
from statsmodels.tools.data import _is_using_pandas
from statsmodels.tsa.vector_ar import var_model
import statsmodels.base.wrapper as wrap
from statsmodels.tools.sm_exceptions import EstimationWarning

from .kalman_filter import INVERT_UNIVARIATE, SOLVE_LU
from .mlemodel import MLEModel, MLEResults, MLEResultsWrapper
from .initialization import Initialization
from .tools import (
    is_invertible, concat, prepare_exog,
    constrain_stationary_multivariate, unconstrain_stationary_multivariate,
    prepare_trend_spec, prepare_trend_data
)


[docs] class VARMAX(MLEModel): r""" Vector Autoregressive Moving Average with eXogenous regressors model Parameters ---------- endog : array_like The observed time-series process :math:`y`, , shaped nobs x k_endog. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. order : iterable The (p,q) order of the model for the number of AR and MA parameters to use. trend : str{'n','c','t','ct'} or iterable, optional Parameter controlling the deterministic trend polynomial :math:`A(t)`. Can be specified as a string where 'c' indicates a constant (i.e. a degree zero component of the trend polynomial), 't' indicates a linear trend with time, and 'ct' is both. Can also be specified as an iterable defining the non-zero polynomial exponents to include, in increasing order. For example, `[1,1,0,1]` denotes :math:`a + bt + ct^3`. Default is a constant trend component. error_cov_type : {'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). Default is "unstructured". measurement_error : bool, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. enforce_stationarity : bool, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : bool, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. trend_offset : int, optional The offset at which to start time trend values. Default is 1, so that if `trend='t'` the trend is equal to 1, 2, ..., nobs. Typically is only set when the model created by extending a previous dataset. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- order : iterable The (p,q) order of the model for the number of AR and MA parameters to use. trend : str{'n','c','t','ct'} or iterable Parameter controlling the deterministic trend polynomial :math:`A(t)`. Can be specified as a string where 'c' indicates a constant (i.e. a degree zero component of the trend polynomial), 't' indicates a linear trend with time, and 'ct' is both. Can also be specified as an iterable defining the non-zero polynomial exponents to include, in increasing order. For example, `[1,1,0,1]` denotes :math:`a + bt + ct^3`. error_cov_type : {'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). Default is "unstructured". measurement_error : bool, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. enforce_stationarity : bool, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : bool, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. Notes ----- Generically, the VARMAX model is specified (see for example chapter 18 of [1]_): .. math:: y_t = A(t) + A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + \epsilon_t + M_1 \epsilon_{t-1} + \dots M_q \epsilon_{t-q} where :math:`\epsilon_t \sim N(0, \Omega)`, and where :math:`y_t` is a `k_endog x 1` vector. Additionally, this model allows considering the case where the variables are measured with error. Note that in the full VARMA(p,q) case there is a fundamental identification problem in that the coefficient matrices :math:`\{A_i, M_j\}` are not generally unique, meaning that for a given time series process there may be multiple sets of matrices that equivalently represent it. See Chapter 12 of [1]_ for more information. Although this class can be used to estimate VARMA(p,q) models, a warning is issued to remind users that no steps have been taken to ensure identification in this case. References ---------- .. [1] Lütkepohl, Helmut. 2007. New Introduction to Multiple Time Series Analysis. Berlin: Springer. """ def __init__(self, endog, exog=None, order=(1, 0), trend='c', error_cov_type='unstructured', measurement_error=False, enforce_stationarity=True, enforce_invertibility=True, trend_offset=1, **kwargs): # Model parameters self.error_cov_type = error_cov_type self.measurement_error = measurement_error self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility # Save the given orders self.order = order # Model orders self.k_ar = int(order[0]) self.k_ma = int(order[1]) # Check for valid model if error_cov_type not in ['diagonal', 'unstructured']: raise ValueError('Invalid error covariance matrix type' ' specification.') if self.k_ar == 0 and self.k_ma == 0: raise ValueError('Invalid VARMAX(p,q) specification; at least one' ' p,q must be greater than zero.') # Warn for VARMA model if self.k_ar > 0 and self.k_ma > 0: warn('Estimation of VARMA(p,q) models is not generically robust,' ' due especially to identification issues.', EstimationWarning) # Trend self.trend = trend self.trend_offset = trend_offset self.polynomial_trend, self.k_trend = prepare_trend_spec(self.trend) self._trend_is_const = (self.polynomial_trend.size == 1 and self.polynomial_trend[0] == 1) # Exogenous data (self.k_exog, exog) = prepare_exog(exog) # Note: at some point in the future might add state regression, as in # SARIMAX. self.mle_regression = self.k_exog > 0 # We need to have an array or pandas at this point if not _is_using_pandas(endog, None): endog = np.asanyarray(endog) # Model order # Used internally in various places _min_k_ar = max(self.k_ar, 1) self._k_order = _min_k_ar + self.k_ma # Number of states k_endog = endog.shape[1] k_posdef = k_endog k_states = k_endog * self._k_order # By default, initialize as stationary kwargs.setdefault('initialization', 'stationary') # By default, use LU decomposition kwargs.setdefault('inversion_method', INVERT_UNIVARIATE | SOLVE_LU) # Initialize the state space model super().__init__( endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs ) # Set as time-varying model if we have time-trend or exog if self.k_exog > 0 or (self.k_trend > 0 and not self._trend_is_const): self.ssm._time_invariant = False # Initialize the parameters self.parameters = {} self.parameters['trend'] = self.k_endog * self.k_trend self.parameters['ar'] = self.k_endog**2 * self.k_ar self.parameters['ma'] = self.k_endog**2 * self.k_ma self.parameters['regression'] = self.k_endog * self.k_exog if self.error_cov_type == 'diagonal': self.parameters['state_cov'] = self.k_endog # These parameters fill in a lower-triangular matrix which is then # dotted with itself to get a positive definite matrix. elif self.error_cov_type == 'unstructured': self.parameters['state_cov'] = ( int(self.k_endog * (self.k_endog + 1) / 2) ) self.parameters['obs_cov'] = self.k_endog * self.measurement_error self.k_params = sum(self.parameters.values()) # Initialize trend data: we create trend data with one more observation # than we actually have, to make it easier to insert the appropriate # trend component into the final state intercept. trend_data = prepare_trend_data( self.polynomial_trend, self.k_trend, self.nobs + 1, offset=self.trend_offset) self._trend_data = trend_data[:-1] self._final_trend = trend_data[-1:] # Initialize known elements of the state space matrices # If we have exog effects, then the state intercept needs to be # time-varying if (self.k_trend > 0 and not self._trend_is_const) or self.k_exog > 0: self.ssm['state_intercept'] = np.zeros((self.k_states, self.nobs)) # self.ssm['obs_intercept'] = np.zeros((self.k_endog, self.nobs)) # The design matrix is just an identity for the first k_endog states idx = np.diag_indices(self.k_endog) self.ssm[('design',) + idx] = 1 # The transition matrix is described in four blocks, where the upper # left block is in companion form with the autoregressive coefficient # matrices (so it is shaped k_endog * k_ar x k_endog * k_ar) ... if self.k_ar > 0: idx = np.diag_indices((self.k_ar - 1) * self.k_endog) idx = idx[0] + self.k_endog, idx[1] self.ssm[('transition',) + idx] = 1 # ... and the lower right block is in companion form with zeros as the # coefficient matrices (it is shaped k_endog * k_ma x k_endog * k_ma). idx = np.diag_indices((self.k_ma - 1) * self.k_endog) idx = (idx[0] + (_min_k_ar + 1) * self.k_endog, idx[1] + _min_k_ar * self.k_endog) self.ssm[('transition',) + idx] = 1 # The selection matrix is described in two blocks, where the upper # block selects the all k_posdef errors in the first k_endog rows # (the upper block is shaped k_endog * k_ar x k) and the lower block # also selects all k_posdef errors in the first k_endog rows (the lower # block is shaped k_endog * k_ma x k). idx = np.diag_indices(self.k_endog) self.ssm[('selection',) + idx] = 1 idx = idx[0] + _min_k_ar * self.k_endog, idx[1] if self.k_ma > 0: self.ssm[('selection',) + idx] = 1 # Cache some indices if self._trend_is_const and self.k_exog == 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog, :] elif self.k_trend > 0 or self.k_exog > 0: self._idx_state_intercept = np.s_['state_intercept', :k_endog, :-1] if self.k_ar > 0: self._idx_transition = np.s_['transition', :k_endog, :] else: self._idx_transition = np.s_['transition', :k_endog, k_endog:] if self.error_cov_type == 'diagonal': self._idx_state_cov = ( ('state_cov',) + np.diag_indices(self.k_endog)) elif self.error_cov_type == 'unstructured': self._idx_lower_state_cov = np.tril_indices(self.k_endog) if self.measurement_error: self._idx_obs_cov = ('obs_cov',) + np.diag_indices(self.k_endog) # Cache some slices def _slice(key, offset): length = self.parameters[key] param_slice = np.s_[offset:offset + length] offset += length return param_slice, offset offset = 0 self._params_trend, offset = _slice('trend', offset) self._params_ar, offset = _slice('ar', offset) self._params_ma, offset = _slice('ma', offset) self._params_regression, offset = _slice('regression', offset) self._params_state_cov, offset = _slice('state_cov', offset) self._params_obs_cov, offset = _slice('obs_cov', offset) # Variable holding optional final `exog` # (note: self._final_trend was set earlier) self._final_exog = None # Update _init_keys attached by super self._init_keys += ['order', 'trend', 'error_cov_type', 'measurement_error', 'enforce_stationarity', 'enforce_invertibility'] + list(kwargs.keys())
[docs] def clone(self, endog, exog=None, **kwargs): return self._clone_from_init_kwds(endog, exog=exog, **kwargs)
@property def _res_classes(self): return {'fit': (VARMAXResults, VARMAXResultsWrapper)} @property def start_params(self): params = np.zeros(self.k_params, dtype=np.float64) # A. Run a multivariate regression to get beta estimates endog = pd.DataFrame(self.endog.copy()) endog = endog.interpolate() endog = np.require(endog.bfill(), requirements="W") exog = None if self.k_trend > 0 and self.k_exog > 0: exog = np.c_[self._trend_data, self.exog] elif self.k_trend > 0: exog = self._trend_data elif self.k_exog > 0: exog = self.exog # Although the Kalman filter can deal with missing values in endog, # conditional sum of squares cannot if np.any(np.isnan(endog)): mask = ~np.any(np.isnan(endog), axis=1) endog = endog[mask] if exog is not None: exog = exog[mask] # Regression and trend effects via OLS trend_params = np.zeros(0) exog_params = np.zeros(0) if self.k_trend > 0 or self.k_exog > 0: trendexog_params = np.linalg.pinv(exog).dot(endog) endog -= np.dot(exog, trendexog_params) if self.k_trend > 0: trend_params = trendexog_params[:self.k_trend].T if self.k_endog > 0: exog_params = trendexog_params[self.k_trend:].T # B. Run a VAR model on endog to get trend, AR parameters ar_params = [] k_ar = self.k_ar if self.k_ar > 0 else 1 mod_ar = var_model.VAR(endog) res_ar = mod_ar.fit(maxlags=k_ar, ic=None, trend='n') if self.k_ar > 0: ar_params = np.array(res_ar.params).T.ravel() endog = res_ar.resid # Test for stationarity if self.k_ar > 0 and self.enforce_stationarity: coefficient_matrices = ( ar_params.reshape( self.k_endog * self.k_ar, self.k_endog ).T ).reshape(self.k_endog, self.k_endog, self.k_ar).T stationary = is_invertible([1] + list(-coefficient_matrices)) if not stationary: warn('Non-stationary starting autoregressive parameters' ' found. Using zeros as starting parameters.') ar_params *= 0 # C. Run a VAR model on the residuals to get MA parameters ma_params = [] if self.k_ma > 0: mod_ma = var_model.VAR(endog) res_ma = mod_ma.fit(maxlags=self.k_ma, ic=None, trend='n') ma_params = np.array(res_ma.params.T).ravel() # Test for invertibility if self.enforce_invertibility: coefficient_matrices = ( ma_params.reshape( self.k_endog * self.k_ma, self.k_endog ).T ).reshape(self.k_endog, self.k_endog, self.k_ma).T invertible = is_invertible([1] + list(-coefficient_matrices)) if not invertible: warn('Non-stationary starting moving-average parameters' ' found. Using zeros as starting parameters.') ma_params *= 0 # Transform trend / exog params from mean form to intercept form if self.k_ar > 0 and (self.k_trend > 0 or self.mle_regression): coefficient_matrices = ( ar_params.reshape( self.k_endog * self.k_ar, self.k_endog ).T ).reshape(self.k_endog, self.k_endog, self.k_ar).T tmp = np.eye(self.k_endog) - np.sum(coefficient_matrices, axis=0) if self.k_trend > 0: trend_params = np.dot(tmp, trend_params) if self.mle_regression > 0: exog_params = np.dot(tmp, exog_params) # 1. Intercept terms if self.k_trend > 0: params[self._params_trend] = trend_params.ravel() # 2. AR terms if self.k_ar > 0: params[self._params_ar] = ar_params # 3. MA terms if self.k_ma > 0: params[self._params_ma] = ma_params # 4. Regression terms if self.mle_regression: params[self._params_regression] = exog_params.ravel() # 5. State covariance terms if self.error_cov_type == 'diagonal': params[self._params_state_cov] = res_ar.sigma_u.diagonal() elif self.error_cov_type == 'unstructured': cov_factor = np.linalg.cholesky(res_ar.sigma_u) params[self._params_state_cov] = ( cov_factor[self._idx_lower_state_cov].ravel()) # 5. Measurement error variance terms if self.measurement_error: if self.k_ma > 0: params[self._params_obs_cov] = res_ma.sigma_u.diagonal() else: params[self._params_obs_cov] = res_ar.sigma_u.diagonal() return params @property def param_names(self): param_names = [] endog_names = self.endog_names if not isinstance(self.endog_names, list): endog_names = [endog_names] # 1. Intercept terms if self.k_trend > 0: for j in range(self.k_endog): for i in self.polynomial_trend.nonzero()[0]: if i == 0: param_names += ['intercept.%s' % endog_names[j]] elif i == 1: param_names += ['drift.%s' % endog_names[j]] else: param_names += ['trend.%d.%s' % (i, endog_names[j])] # 2. AR terms param_names += [ 'L%d.%s.%s' % (i+1, endog_names[k], endog_names[j]) for j in range(self.k_endog) for i in range(self.k_ar) for k in range(self.k_endog) ] # 3. MA terms param_names += [ 'L%d.e(%s).%s' % (i+1, endog_names[k], endog_names[j]) for j in range(self.k_endog) for i in range(self.k_ma) for k in range(self.k_endog) ] # 4. Regression terms param_names += [ f'beta.{self.exog_names[j]}.{endog_names[i]}' for i in range(self.k_endog) for j in range(self.k_exog) ] # 5. State covariance terms if self.error_cov_type == 'diagonal': param_names += [ 'sigma2.%s' % endog_names[i] for i in range(self.k_endog) ] elif self.error_cov_type == 'unstructured': param_names += [ ('sqrt.var.%s' % endog_names[i] if i == j else f'sqrt.cov.{endog_names[j]}.{endog_names[i]}') for i in range(self.k_endog) for j in range(i+1) ] # 5. Measurement error variance terms if self.measurement_error: param_names += [ 'measurement_variance.%s' % endog_names[i] for i in range(self.k_endog) ] return param_names
[docs] def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- Constrains the factor transition to be stationary and variances to be positive. """ unconstrained = np.array(unconstrained, ndmin=1) constrained = np.zeros(unconstrained.shape, dtype=unconstrained.dtype) # 1. Intercept terms: nothing to do constrained[self._params_trend] = unconstrained[self._params_trend] # 2. AR terms: optionally force to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(unconstrained[self._params_state_cov]**2) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=unconstrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( unconstrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = unconstrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ar] = coefficient_matrices.ravel() else: constrained[self._params_ar] = unconstrained[self._params_ar] # 3. MA terms: optionally force to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=unconstrained.dtype) coefficients = unconstrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ma] = coefficient_matrices.ravel() else: constrained[self._params_ma] = unconstrained[self._params_ma] # 4. Regression terms: nothing to do constrained[self._params_regression] = ( unconstrained[self._params_regression]) # 5. State covariance terms # If we have variances, force them to be positive if self.error_cov_type == 'diagonal': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]**2) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # Force these to be positive constrained[self._params_obs_cov] = ( unconstrained[self._params_obs_cov]**2) return constrained
[docs] def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. """ constrained = np.array(constrained, ndmin=1) unconstrained = np.zeros(constrained.shape, dtype=constrained.dtype) # 1. Intercept terms: nothing to do unconstrained[self._params_trend] = constrained[self._params_trend] # 2. AR terms: optionally were forced to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(constrained[self._params_state_cov]) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=constrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( constrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = constrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ar] = unconstrained_matrices.ravel() else: unconstrained[self._params_ar] = constrained[self._params_ar] # 3. MA terms: optionally were forced to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=constrained.dtype) coefficients = constrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ma] = unconstrained_matrices.ravel() else: unconstrained[self._params_ma] = constrained[self._params_ma] # 4. Regression terms: nothing to do unconstrained[self._params_regression] = ( constrained[self._params_regression]) # 5. State covariance terms # If we have variances, then these were forced to be positive if self.error_cov_type == 'diagonal': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]**0.5) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # These were forced to be positive unconstrained[self._params_obs_cov] = ( constrained[self._params_obs_cov]**0.5) return unconstrained
def _validate_can_fix_params(self, param_names): super()._validate_can_fix_params(param_names) ix = np.cumsum(list(self.parameters.values()))[:-1] (_, ar_names, ma_names, _, _, _) = ( arr.tolist() for arr in np.array_split(self.param_names, ix)) if self.enforce_stationarity and self.k_ar > 0: if self.k_endog > 1 or self.k_ar > 1: fix_all = param_names.issuperset(ar_names) fix_any = ( len(param_names.intersection(ar_names)) > 0) if fix_any and not fix_all: raise ValueError( 'Cannot fix individual autoregressive parameters' ' when `enforce_stationarity=True`. In this case,' ' must either fix all autoregressive parameters or' ' none.') if self.enforce_invertibility and self.k_ma > 0: if self.k_endog or self.k_ma > 1: fix_all = param_names.issuperset(ma_names) fix_any = ( len(param_names.intersection(ma_names)) > 0) if fix_any and not fix_all: raise ValueError( 'Cannot fix individual moving average parameters' ' when `enforce_invertibility=True`. In this case,' ' must either fix all moving average parameters or' ' none.')
[docs] def update(self, params, transformed=True, includes_fixed=False, complex_step=False): params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) # 1. State intercept # - Exog if self.mle_regression: exog_params = params[self._params_regression].reshape( self.k_endog, self.k_exog).T intercept = np.dot(self.exog[1:], exog_params) self.ssm[self._idx_state_intercept] = intercept.T if self._final_exog is not None: self.ssm['state_intercept', :self.k_endog, -1] = np.dot( self._final_exog, exog_params) # - Trend if self.k_trend > 0: # If we did not set the intercept above, zero it out so we can # just += later if not self.mle_regression: zero = np.array(0, dtype=params.dtype) self.ssm['state_intercept', :] = zero trend_params = params[self._params_trend].reshape( self.k_endog, self.k_trend).T if self._trend_is_const: intercept = trend_params else: intercept = np.dot(self._trend_data[1:], trend_params) self.ssm[self._idx_state_intercept] += intercept.T if (self._final_trend is not None and self._idx_state_intercept[-1].stop == -1): self.ssm['state_intercept', :self.k_endog, -1:] += np.dot( self._final_trend, trend_params).T # Need to set the last state intercept to np.nan (with appropriate # dtype) if we don't have the final exog if self.mle_regression and self._final_exog is None: nan = np.array(np.nan, dtype=params.dtype) self.ssm['state_intercept', :self.k_endog, -1] = nan # 2. Transition ar = params[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) ma = params[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) self.ssm[self._idx_transition] = np.c_[ar, ma] # 3. State covariance if self.error_cov_type == 'diagonal': self.ssm[self._idx_state_cov] = ( params[self._params_state_cov] ) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=params.dtype) state_cov_lower[self._idx_lower_state_cov] = ( params[self._params_state_cov]) self.ssm['state_cov'] = np.dot(state_cov_lower, state_cov_lower.T) # 4. Observation covariance if self.measurement_error: self.ssm[self._idx_obs_cov] = params[self._params_obs_cov]
@contextlib.contextmanager def _set_final_exog(self, exog): """ Set the final state intercept value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- We need special handling for simulating or forecasting with `exog` or trend, because if we had these then the last predicted_state has been set to NaN since we did not have the appropriate `exog` to create it. Since we handle trend in the same way as `exog`, we still have this issue when only trend is used without `exog`. """ cache_value = self._final_exog if self.k_exog > 0: if exog is not None: exog = np.atleast_1d(exog) if exog.ndim == 2: exog = exog[:1] try: exog = np.reshape(exog[:1], (self.k_exog,)) except ValueError: raise ValueError('Provided exogenous values are not of the' ' appropriate shape. Required %s, got %s.' % (str((self.k_exog,)), str(exog.shape))) self._final_exog = exog try: yield finally: self._final_exog = cache_value
[docs] @Appender(MLEModel.simulate.__doc__) def simulate(self, params, nsimulations, measurement_shocks=None, state_shocks=None, initial_state=None, anchor=None, repetitions=None, exog=None, extend_model=None, extend_kwargs=None, transformed=True, includes_fixed=False, **kwargs): with self._set_final_exog(exog): out = super().simulate( params, nsimulations, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state, anchor=anchor, repetitions=repetitions, exog=exog, extend_model=extend_model, extend_kwargs=extend_kwargs, transformed=transformed, includes_fixed=includes_fixed, **kwargs) return out
[docs] class VARMAXResults(MLEResults): """ Class to hold results from fitting an VARMAX model. Parameters ---------- model : VARMAX instance The fitted model instance Attributes ---------- specification : dictionary Dictionary including all attributes from the VARMAX model instance. coefficient_matrices_var : ndarray Array containing autoregressive lag polynomial coefficient matrices, ordered from lowest degree to highest. coefficient_matrices_vma : ndarray Array containing moving average lag polynomial coefficients, ordered from lowest degree to highest. See Also -------- statsmodels.tsa.statespace.kalman_filter.FilterResults statsmodels.tsa.statespace.mlemodel.MLEResults """ def __init__(self, model, params, filter_results, cov_type=None, cov_kwds=None, **kwargs): super().__init__(model, params, filter_results, cov_type, cov_kwds, **kwargs) self.specification = Bunch(**{ # Set additional model parameters 'error_cov_type': self.model.error_cov_type, 'measurement_error': self.model.measurement_error, 'enforce_stationarity': self.model.enforce_stationarity, 'enforce_invertibility': self.model.enforce_invertibility, 'trend_offset': self.model.trend_offset, 'order': self.model.order, # Model order 'k_ar': self.model.k_ar, 'k_ma': self.model.k_ma, # Trend / Regression 'trend': self.model.trend, 'k_trend': self.model.k_trend, 'k_exog': self.model.k_exog, }) # Polynomials / coefficient matrices self.coefficient_matrices_var = None self.coefficient_matrices_vma = None if self.model.k_ar > 0: ar_params = np.array(self.params[self.model._params_ar]) k_endog = self.model.k_endog k_ar = self.model.k_ar self.coefficient_matrices_var = ( ar_params.reshape(k_endog * k_ar, k_endog).T ).reshape(k_endog, k_endog, k_ar).T if self.model.k_ma > 0: ma_params = np.array(self.params[self.model._params_ma]) k_endog = self.model.k_endog k_ma = self.model.k_ma self.coefficient_matrices_vma = ( ma_params.reshape(k_endog * k_ma, k_endog).T ).reshape(k_endog, k_endog, k_ma).T
[docs] def extend(self, endog, exog=None, **kwargs): # If we have exog, then the last element of predicted_state and # predicted_state_cov are nan (since they depend on the exog associated # with the first out-of-sample point), so we need to compute them here if exog is not None: fcast = self.get_prediction(self.nobs, self.nobs, exog=exog[:1]) fcast_results = fcast.prediction_results initial_state = fcast_results.predicted_state[..., 0] initial_state_cov = fcast_results.predicted_state_cov[..., 0] else: initial_state = self.predicted_state[..., -1] initial_state_cov = self.predicted_state_cov[..., -1] kwargs.setdefault('trend_offset', self.nobs + self.model.trend_offset) mod = self.model.clone(endog, exog=exog, **kwargs) mod.ssm.initialization = Initialization( mod.k_states, 'known', constant=initial_state, stationary_cov=initial_state_cov) if self.smoother_results is not None: res = mod.smooth(self.params) else: res = mod.filter(self.params) return res
@contextlib.contextmanager def _set_final_exog(self, exog): """ Set the final state intercept value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- This context manager calls the model-level context manager and additionally updates the last element of filter_results.state_intercept appropriately. """ mod = self.model with mod._set_final_exog(exog): cache_value = self.filter_results.state_intercept[:, -1] mod.update(self.params) self.filter_results.state_intercept[:mod.k_endog, -1] = ( mod['state_intercept', :mod.k_endog, -1]) try: yield finally: self.filter_results.state_intercept[:, -1] = cache_value @contextlib.contextmanager def _set_final_predicted_state(self, exog, out_of_sample): """ Set the final predicted state value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- We need special handling for forecasting with `exog`, because if we had these then the last predicted_state has been set to NaN since we did not have the appropriate `exog` to create it. """ flag = out_of_sample and self.model.k_exog > 0 if flag: tmp_endog = concat([ self.model.endog[-1:], np.zeros((1, self.model.k_endog))]) if self.model.k_exog > 0: tmp_exog = concat([self.model.exog[-1:], exog[:1]]) else: tmp_exog = None tmp_trend_offset = self.model.trend_offset + self.nobs - 1 tmp_mod = self.model.clone(tmp_endog, exog=tmp_exog, trend_offset=tmp_trend_offset) constant = self.filter_results.predicted_state[:, -2] stationary_cov = self.filter_results.predicted_state_cov[:, :, -2] tmp_mod.ssm.initialize_known(constant=constant, stationary_cov=stationary_cov) tmp_res = tmp_mod.filter(self.params, transformed=True, includes_fixed=True, return_ssm=True) # Patch up `predicted_state` self.filter_results.predicted_state[:, -1] = ( tmp_res.predicted_state[:, -2]) try: yield finally: if flag: self.filter_results.predicted_state[:, -1] = np.nan
[docs] @Appender(MLEResults.get_prediction.__doc__) def get_prediction(self, start=None, end=None, dynamic=False, information_set='predicted', index=None, exog=None, **kwargs): if start is None: start = 0 # Handle end (e.g. date) _start, _end, out_of_sample, _ = ( self.model._get_prediction_index(start, end, index, silent=True)) # Normalize `exog` exog = self.model._validate_out_of_sample_exog(exog, out_of_sample) # Handle trend offset for extended model extend_kwargs = {} if self.model.k_trend > 0: extend_kwargs['trend_offset'] = ( self.model.trend_offset + self.nobs) # Get the prediction with self._set_final_exog(exog): with self._set_final_predicted_state(exog, out_of_sample): out = super().get_prediction( start=start, end=end, dynamic=dynamic, information_set=information_set, index=index, exog=exog, extend_kwargs=extend_kwargs, **kwargs) return out
[docs] @Appender(MLEResults.simulate.__doc__) def simulate(self, nsimulations, measurement_shocks=None, state_shocks=None, initial_state=None, anchor=None, repetitions=None, exog=None, extend_model=None, extend_kwargs=None, **kwargs): if anchor is None or anchor == 'start': iloc = 0 elif anchor == 'end': iloc = self.nobs else: iloc, _, _ = self.model._get_index_loc(anchor) if iloc < 0: iloc = self.nobs + iloc if iloc > self.nobs: raise ValueError('Cannot anchor simulation after the estimated' ' sample.') out_of_sample = max(iloc + nsimulations - self.nobs, 0) # Normalize `exog` exog = self.model._validate_out_of_sample_exog(exog, out_of_sample) with self._set_final_predicted_state(exog, out_of_sample): out = super().simulate( nsimulations, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state, anchor=anchor, repetitions=repetitions, exog=exog, extend_model=extend_model, extend_kwargs=extend_kwargs, **kwargs) return out
def _news_previous_results(self, previous, start, end, periods, revisions_details_start=False, state_index=None): # TODO: tests for: # - the model cloning used in `kalman_smoother.news` works when we # have time-varying exog (i.e. or do we need to somehow explicitly # call the _set_final_exog and _set_final_predicted_state methods # on the rev_mod / revision_results) # - in the case of revisions to `endog`, should the revised model use # the `previous` exog? or the `revised` exog? # We need to figure out the out-of-sample exog, so that we can add back # in the last exog, predicted state exog = None out_of_sample = self.nobs - previous.nobs if self.model.k_exog > 0 and out_of_sample > 0: exog = self.model.exog[-out_of_sample:] # Compute the news with contextlib.ExitStack() as stack: stack.enter_context(previous.model._set_final_exog(exog)) stack.enter_context(previous._set_final_predicted_state( exog, out_of_sample)) out = self.smoother_results.news( previous.smoother_results, start=start, end=end, revisions_details_start=revisions_details_start, state_index=state_index) return out
[docs] @Appender(MLEResults.summary.__doc__) def summary(self, alpha=.05, start=None, separate_params=True): from statsmodels.iolib.summary import summary_params # Create the model name spec = self.specification if spec.k_ar > 0 and spec.k_ma > 0: model_name = 'VARMA' order = f'({spec.k_ar},{spec.k_ma})' elif spec.k_ar > 0: model_name = 'VAR' order = '(%s)' % (spec.k_ar) else: model_name = 'VMA' order = '(%s)' % (spec.k_ma) if spec.k_exog > 0: model_name += 'X' model_name = [model_name + order] if spec.k_trend > 0: model_name.append('intercept') if spec.measurement_error: model_name.append('measurement error') summary = super().summary( alpha=alpha, start=start, model_name=model_name, display_params=not separate_params ) if separate_params: indices = np.arange(len(self.params)) def make_table(self, mask, title, strip_end=True): res = (self, self.params[mask], self.bse[mask], self.zvalues[mask], self.pvalues[mask], self.conf_int(alpha)[mask]) param_names = [] for name in np.array(self.data.param_names)[mask].tolist(): if strip_end: param_name = '.'.join(name.split('.')[:-1]) else: param_name = name if name in self.fixed_params: param_name = '%s (fixed)' % param_name param_names.append(param_name) return summary_params(res, yname=None, xname=param_names, alpha=alpha, use_t=False, title=title) # Add parameter tables for each endogenous variable k_endog = self.model.k_endog k_ar = self.model.k_ar k_ma = self.model.k_ma k_trend = self.model.k_trend k_exog = self.model.k_exog endog_masks = [] for i in range(k_endog): masks = [] offset = 0 # 1. Intercept terms if k_trend > 0: masks.append(np.arange(i, i + k_endog * k_trend, k_endog)) offset += k_endog * k_trend # 2. AR terms if k_ar > 0: start = i * k_endog * k_ar end = (i + 1) * k_endog * k_ar masks.append( offset + np.arange(start, end)) offset += k_ar * k_endog**2 # 3. MA terms if k_ma > 0: start = i * k_endog * k_ma end = (i + 1) * k_endog * k_ma masks.append( offset + np.arange(start, end)) offset += k_ma * k_endog**2 # 4. Regression terms if k_exog > 0: masks.append( offset + np.arange(i * k_exog, (i + 1) * k_exog)) offset += k_endog * k_exog # 5. Measurement error variance terms if self.model.measurement_error: masks.append( np.array(self.model.k_params - i - 1, ndmin=1)) # Create the table mask = np.concatenate(masks) endog_masks.append(mask) endog_names = self.model.endog_names if not isinstance(endog_names, list): endog_names = [endog_names] title = "Results for equation %s" % endog_names[i] table = make_table(self, mask, title) summary.tables.append(table) # State covariance terms state_cov_mask = ( np.arange(len(self.params))[self.model._params_state_cov]) table = make_table(self, state_cov_mask, "Error covariance matrix", strip_end=False) summary.tables.append(table) # Add a table for all other parameters masks = [] for m in (endog_masks, [state_cov_mask]): m = np.array(m).flatten() if len(m) > 0: masks.append(m) masks = np.concatenate(masks) inverse_mask = np.array(list(set(indices).difference(set(masks)))) if len(inverse_mask) > 0: table = make_table(self, inverse_mask, "Other parameters", strip_end=False) summary.tables.append(table) return summary
class VARMAXResultsWrapper(MLEResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts(MLEResultsWrapper._wrap_attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts(MLEResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(VARMAXResultsWrapper, VARMAXResults) # noqa:E305

Last update: Nov 14, 2024