Source code for statsmodels.tsa.vector_ar.vecm
from collections import defaultdict
import numpy as np
from numpy import hstack, vstack
from numpy.linalg import inv, svd
import scipy
import scipy.stats
from statsmodels.iolib.summary import Summary
from statsmodels.iolib.table import SimpleTable
from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.sm_exceptions import HypothesisTestWarning
from statsmodels.tools.validation import string_like
import statsmodels.tsa.base.tsa_model as tsbase
from statsmodels.tsa.coint_tables import c_sja, c_sjt
from statsmodels.tsa.tsatools import duplication_matrix, lagmat, vec
from statsmodels.tsa.vector_ar.hypothesis_test_results import (
CausalityTestResults,
WhitenessTestResults,
)
import statsmodels.tsa.vector_ar.irf as irf
import statsmodels.tsa.vector_ar.plotting as plot
from statsmodels.tsa.vector_ar.util import get_index, seasonal_dummies
from statsmodels.tsa.vector_ar.var_model import (
VAR,
LagOrderResults,
_compute_acov,
forecast,
forecast_interval,
ma_rep,
orth_ma_rep,
test_normality,
)
[docs]
def select_order(
data,
maxlags: int,
deterministic: str = "n",
seasons: int = 0,
exog=None,
exog_coint=None,
):
"""
Compute lag order selections based on each of the available information
criteria.
Parameters
----------
data : array_like (nobs_tot x neqs)
The observed data.
maxlags : int
All orders until maxlag will be compared according to the information
criteria listed in the Results-section of this docstring.
deterministic : str {"n", "co", "ci", "lo", "li"}
* ``"n"`` - no deterministic terms
* ``"co"`` - constant outside the cointegration relation
* ``"ci"`` - constant within the cointegration relation
* ``"lo"`` - linear trend outside the cointegration relation
* ``"li"`` - linear trend within the cointegration relation
Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for
linear trend with intercept). See the docstring of the
:class:`VECM`-class for more information.
seasons : int, default: 0
Number of periods in a seasonal cycle.
exog : ndarray (nobs_tot x neqs) or `None`, default: `None`
Deterministic terms outside the cointegration relation.
exog_coint : ndarray (nobs_tot x neqs) or `None`, default: `None`
Deterministic terms inside the cointegration relation.
Returns
-------
selected_orders : :class:`statsmodels.tsa.vector_ar.var_model.LagOrderResults`
"""
ic = defaultdict(list)
deterministic = string_like(deterministic, "deterministic")
for p in range(1, maxlags + 2): # +2 because k_ar_VECM == k_ar_VAR - 1
exogs = []
if "co" in deterministic or "ci" in deterministic:
exogs.append(np.ones(len(data)).reshape(-1, 1))
if "lo" in deterministic or "li" in deterministic:
exogs.append(1 + np.arange(len(data)).reshape(-1, 1))
if exog_coint is not None:
exogs.append(exog_coint)
if seasons > 0:
exogs.append(
seasonal_dummies(seasons, len(data)).reshape(-1, seasons - 1)
)
if exog is not None:
exogs.append(exog)
exogs = hstack(exogs) if exogs else None
var_model = VAR(data, exogs)
# exclude some periods ==> same amount of data used for each lag order
var_result = var_model._estimate_var(lags=p, offset=maxlags + 1 - p)
for k, v in var_result.info_criteria.items():
ic[k].append(v)
# -1+1 in the following line is only here for clarification.
# -1 because k_ar_VECM == k_ar_VAR - 1
# +1 because p == index +1 (we start with p=1, not p=0)
selected_orders = {
ic_name: np.array(ic_value).argmin() - 1 + 1
for ic_name, ic_value in ic.items()
}
return LagOrderResults(ic, selected_orders, True)
def _linear_trend(nobs, k_ar, coint=False):
"""
Construct an ndarray representing a linear trend in a VECM.
Parameters
----------
nobs : int
Number of observations excluding the presample.
k_ar : int
Number of lags in levels.
coint : bool, default: False
If True (False), the returned array represents a linear trend inside
(outside) the cointegration relation.
Returns
-------
ret : ndarray (nobs)
An ndarray representing a linear trend in a VECM
Notes
-----
The returned array's size is nobs and not nobs_tot so it cannot be used to
construct the exog-argument of VECM's __init__ method.
"""
ret = np.arange(nobs) + k_ar
if not coint:
ret += 1
return ret
def _num_det_vars(det_string, seasons=0):
"""Gives the number of deterministic variables specified by det_string and
seasons.
Parameters
----------
det_string : str {"n", "co", "ci", "lo", "li"}
* "n" - no deterministic terms
* "co" - constant outside the cointegration relation
* "ci" - constant within the cointegration relation
* "lo" - linear trend outside the cointegration relation
* "li" - linear trend within the cointegration relation
Combinations of these are possible (e.g. "cili" or "colo" for linear
trend with intercept). See the docstring of the :class:`VECM`-class for
more information.
seasons : int
Number of periods in a seasonal cycle.
Returns
-------
num : int
Number of deterministic terms and number dummy variables for seasonal
terms.
"""
num = 0
det_string = string_like(det_string, "det_string")
if "ci" in det_string or "co" in det_string:
num += 1
if "li" in det_string or "lo" in det_string:
num += 1
if seasons > 0:
num += seasons - 1
return num
def _deterministic_to_exog(
deterministic,
seasons,
nobs_tot,
first_season=0,
seasons_centered=False,
exog=None,
exog_coint=None,
):
"""
Translate all information about deterministic terms into a single array.
These information is taken from `deterministic` and `seasons` as well as
from the `exog` and `exog_coint` arrays. The resulting array form can then
be used e.g. in VAR's __init__ method.
Parameters
----------
deterministic : str
A string specifying the deterministic terms in the model. See VECM's
docstring for more information.
seasons : int
Number of periods in a seasonal cycle.
nobs_tot : int
Number of observations including the presample.
first_season : int, default: 0
Season of the first observation.
seasons_centered : bool, default: False
If True, the seasonal dummy variables are demeaned such that they are
orthogonal to an intercept term.
exog : ndarray (nobs_tot x #det_terms) or None, default: None
An ndarray representing deterministic terms outside the cointegration
relation.
exog_coint : ndarray (nobs_tot x #det_terms_coint) or None, default: None
An ndarray representing deterministic terms inside the cointegration
relation.
Returns
-------
exog : ndarray or None
None, if the function's arguments do not contain deterministic terms.
Otherwise, an ndarray representing these deterministic terms.
"""
exogs = []
deterministic = string_like(deterministic, "deterministic")
if "co" in deterministic or "ci" in deterministic:
exogs.append(np.ones(nobs_tot))
if exog_coint is not None:
exogs.append(exog_coint)
if "lo" in deterministic or "li" in deterministic:
exogs.append(np.arange(nobs_tot))
if seasons > 0:
exogs.append(
seasonal_dummies(
seasons,
nobs_tot,
first_period=first_season,
centered=seasons_centered,
)
)
if exog is not None:
exogs.append(exog)
return np.column_stack(exogs) if exogs else None
def _mat_sqrt(_2darray):
"""Calculates the square root of a matrix.
Parameters
----------
_2darray : ndarray
A 2-dimensional ndarray representing a square matrix.
Returns
-------
result : ndarray
Square root of the matrix given as function argument.
"""
u_, s_, v_ = svd(_2darray, full_matrices=False)
s_ = np.sqrt(s_)
return u_.dot(s_[:, None] * v_)
def _endog_matrices(
endog,
exog,
exog_coint,
diff_lags,
deterministic,
seasons=0,
first_season=0,
):
"""
Returns different matrices needed for parameter estimation.
Compare p. 186 in [1]_. The returned matrices consist of elements of the
data as well as elements representing deterministic terms. A tuple of
consisting of these matrices is returned.
Parameters
----------
endog : ndarray (neqs x nobs_tot)
The whole sample including the presample.
exog : ndarray (nobs_tot x neqs) or None
Deterministic terms outside the cointegration relation.
exog_coint : ndarray (nobs_tot x neqs) or None
Deterministic terms inside the cointegration relation.
diff_lags : int
Number of lags in the VEC representation.
deterministic : str {``"n"``, ``"co"``, ``"ci"``, ``"lo"``, ``"li"``}
* ``"n"`` - no deterministic terms
* ``"co"`` - constant outside the cointegration relation
* ``"ci"`` - constant within the cointegration relation
* ``"lo"`` - linear trend outside the cointegration relation
* ``"li"`` - linear trend within the cointegration relation
Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for
linear trend with intercept). See the docstring of the
:class:`VECM`-class for more information.
seasons : int, default: 0
Number of periods in a seasonal cycle. 0 (default) means no seasons.
first_season : int, default: 0
The season of the first observation. `0` means first season, `1` means
second season, ..., `seasons-1` means the last season.
Returns
-------
y_1_T : ndarray (neqs x nobs)
The (transposed) data without the presample.
`.. math:: (y_1, \\ldots, y_T)
delta_y_1_T : ndarray (neqs x nobs)
The first differences of endog.
`.. math:: (y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1})
y_lag1 : ndarray (neqs x nobs)
(dimensions assuming no deterministic terms are given)
Endog of the previous period (lag 1).
`.. math:: (y_0, \\ldots, y_{T-1})
delta_x : ndarray (k_ar_diff*neqs x nobs)
(dimensions assuming no deterministic terms are given)
Lagged differenced endog, used as regressor for the short term
equation.
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
deterministic = string_like(deterministic, "deterministic")
# p. 286:
p = diff_lags + 1
y = endog
K = y.shape[0]
y_1_T = y[:, p:]
T = y_1_T.shape[1]
delta_y = np.diff(y)
delta_y_1_T = delta_y[:, p - 1 :]
y_lag1 = y[:, p - 1 : -1]
if "co" in deterministic and "ci" in deterministic:
raise ValueError(
"Both 'co' and 'ci' as deterministic terms given. "
+ "Please choose one of the two."
)
y_lag1_stack = [y_lag1]
if "ci" in deterministic: # pp. 257, 299, 306, 307
y_lag1_stack.append(np.ones(T))
if "li" in deterministic: # p. 299
y_lag1_stack.append(_linear_trend(T, p, coint=True))
if exog_coint is not None:
y_lag1_stack.append(exog_coint[-T - 1 : -1].T)
y_lag1 = np.vstack(y_lag1_stack)
# p. 286:
delta_x = np.zeros((diff_lags * K, T))
if diff_lags > 0:
for j in range(delta_x.shape[1]):
delta_x[:, j] = delta_y[
:, j + p - 2 : None if j - 1 < 0 else j - 1 : -1
].T.reshape(K * (p - 1))
delta_x_stack = [delta_x]
# p. 299, p. 303:
if "co" in deterministic:
delta_x_stack.append(np.ones(T))
if seasons > 0:
delta_x_stack.append(
seasonal_dummies(
seasons,
delta_x.shape[1],
first_period=first_season + diff_lags + 1,
centered=True,
).T
)
if "lo" in deterministic:
delta_x_stack.append(_linear_trend(T, p))
if exog is not None:
delta_x_stack.append(exog[-T:].T)
delta_x = np.vstack(delta_x_stack)
return y_1_T, delta_y_1_T, y_lag1, delta_x
def _r_matrices(delta_y_1_T, y_lag1, delta_x):
"""Returns two ndarrays needed for parameter estimation as well as the
calculation of standard errors.
Parameters
----------
delta_y_1_T : ndarray (neqs x nobs)
The first differences of endog.
`.. math:: (y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1})
y_lag1 : ndarray (neqs x nobs)
(dimensions assuming no deterministic terms are given)
Endog of the previous period (lag 1).
`.. math:: (y_0, \\ldots, y_{T-1})
delta_x : ndarray (k_ar_diff*neqs x nobs)
(dimensions assuming no deterministic terms are given)
Lagged differenced endog, used as regressor for the short term
equation.
Returns
-------
result : tuple
A tuple of two ndarrays. (See p. 292 in [1]_ for the definition of
R_0 and R_1.)
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
# todo: rewrite m such that a big (TxT) matrix is avoided
nobs = y_lag1.shape[1]
m = np.identity(nobs) - (
delta_x.T.dot(inv(delta_x.dot(delta_x.T))).dot(delta_x)
) # p. 291
r0 = delta_y_1_T.dot(m) # p. 292
r1 = y_lag1.dot(m)
return r0, r1
def _sij(delta_x, delta_y_1_T, y_lag1):
"""Returns matrices and eigenvalues and -vectors used for parameter
estimation and the calculation of a models loglikelihood.
Parameters
----------
delta_x : ndarray (k_ar_diff*neqs x nobs)
(dimensions assuming no deterministic terms are given)
delta_y_1_T : ndarray (neqs x nobs)
:math:`(y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1})`
y_lag1 : ndarray (neqs x nobs)
(dimensions assuming no deterministic terms are given)
:math:`(y_0, \\ldots, y_{T-1})`
Returns
-------
result : tuple
A tuple of five ndarrays as well as eigenvalues and -vectors of a
certain (matrix) product of some of the returned ndarrays.
(See pp. 294-295 in [1]_ for more information on
:math:`S_0, S_1, \\lambda_i, \\v_i` for
:math:`i \\in \\{1, \\dots, K\\}`.)
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
nobs = y_lag1.shape[1]
r0, r1 = _r_matrices(delta_y_1_T, y_lag1, delta_x)
s00 = np.dot(r0, r0.T) / nobs
s01 = np.dot(r0, r1.T) / nobs
s10 = s01.T
s11 = np.dot(r1, r1.T) / nobs
s11_ = inv(_mat_sqrt(s11))
# p. 295:
s01_s11_ = np.dot(s01, s11_)
eig = np.linalg.eig(s01_s11_.T @ inv(s00) @ s01_s11_)
lambd = eig[0]
v = eig[1]
# reorder eig_vals to make them decreasing (and order eig_vecs accordingly)
lambd_order = np.argsort(lambd)[::-1]
lambd = lambd[lambd_order]
v = v[:, lambd_order]
return s00, s01, s10, s11, s11_, lambd, v
[docs]
class CointRankResults:
"""A class for holding the results from testing the cointegration rank.
Parameters
----------
rank : int (0 <= `rank` <= `neqs`)
The rank to choose according to the Johansen cointegration rank
test.
neqs : int
Number of variables in the time series.
test_stats : array_like (`rank` + 1 if `rank` < `neqs` else `rank`)
A one-dimensional array-like object containing the test statistics of
the conducted tests.
crit_vals : array_like (`rank` +1 if `rank` < `neqs` else `rank`)
A one-dimensional array-like object containing the critical values
corresponding to the entries in the `test_stats` argument.
method : str, {``"trace"``, ``"maxeig"``}, default: ``"trace"``
If ``"trace"``, the trace test statistic is used. If ``"maxeig"``, the
maximum eigenvalue test statistic is used.
signif : float, {0.1, 0.05, 0.01}, default: 0.05
The test's significance level.
"""
def __init__(
self, rank, neqs, test_stats, crit_vals, method="trace", signif=0.05
):
self.rank = rank
self.neqs = neqs
self.r_1 = [
neqs if method == "trace" else i + 1
for i in range(min(rank + 1, neqs))
]
self.test_stats = test_stats
self.crit_vals = crit_vals
self.method = method
self.signif = signif
[docs]
def summary(self):
headers = ["r_0", "r_1", "test statistic", "critical value"]
title = (
"Johansen cointegration test using "
+ ("trace" if self.method == "trace" else "maximum eigenvalue")
+ f" test statistic with {self.signif:.0%}"
+ " significance level"
)
num_tests = min(self.rank, self.neqs - 1)
data = [
[i, self.r_1[i], self.test_stats[i], self.crit_vals[i]]
for i in range(num_tests + 1)
]
data_fmt = {
"data_fmts": ["%s", "%s", "%#0.4g", "%#0.4g"],
"data_aligns": "r",
}
html_data_fmt = dict(data_fmt)
html_data_fmt["data_fmts"] = [
"<td>" + i + "</td>" for i in html_data_fmt["data_fmts"]
]
return SimpleTable(
data=data,
headers=headers,
title=title,
txt_fmt=data_fmt,
html_fmt=html_data_fmt,
ltx_fmt=data_fmt,
)
def __str__(self):
return self.summary().as_text()
[docs]
def select_coint_rank(
endog, det_order, k_ar_diff, method="trace", signif=0.05
):
"""Calculate the cointegration rank of a VECM.
Parameters
----------
endog : array_like (nobs_tot x neqs)
The data with presample.
det_order : int
* -1 - no deterministic terms
* 0 - constant term
* 1 - linear trend
k_ar_diff : int, nonnegative
Number of lagged differences in the model.
method : str, {``"trace"``, ``"maxeig"``}, default: ``"trace"``
If ``"trace"``, the trace test statistic is used. If ``"maxeig"``, the
maximum eigenvalue test statistic is used.
signif : float, {0.1, 0.05, 0.01}, default: 0.05
The test's significance level.
Returns
-------
rank : :class:`CointRankResults`
A :class:`CointRankResults` object containing the cointegration rank suggested
by the test and allowing a summary to be printed.
"""
if method not in ["trace", "maxeig"]:
raise ValueError(
"The method argument has to be either 'trace' or"
"'maximum eigenvalue'."
)
if det_order not in [-1, 0, 1]:
if type(det_order) is int and det_order > 1:
raise ValueError(
"A det_order greather than 1 is not supported."
"Use a value of -1, 0, or 1."
)
else:
raise ValueError("det_order must be -1, 0, or 1.")
possible_signif_values = [0.1, 0.05, 0.01]
if signif not in possible_signif_values:
raise ValueError(
"Please choose a significance level from {0.1, 0.05," "0.01}"
)
coint_result = coint_johansen(endog, det_order, k_ar_diff)
test_stat = coint_result.lr1 if method == "trace" else coint_result.lr2
crit_vals = coint_result.cvt if method == "trace" else coint_result.cvm
signif_index = possible_signif_values.index(signif)
neqs = endog.shape[1]
r_0 = 0 # rank in null hypothesis
while r_0 < neqs:
if test_stat[r_0] < crit_vals[r_0, signif_index]:
break # we accept current rank
else:
r_0 += 1 # we reject current rank and test next possible rank
return CointRankResults(
r_0,
neqs,
test_stat[: r_0 + 1],
crit_vals[: r_0 + 1, signif_index],
method,
signif,
)
[docs]
def coint_johansen(endog, det_order, k_ar_diff):
"""
Johansen cointegration test of the cointegration rank of a VECM
Parameters
----------
endog : array_like (nobs_tot x neqs)
Data to test
det_order : int
* -1 - no deterministic terms
* 0 - constant term
* 1 - linear trend
k_ar_diff : int, nonnegative
Number of lagged differences in the model.
Returns
-------
result : JohansenTestResult
An object containing the test's results. The most important attributes
of the result class are:
* trace_stat and trace_stat_crit_vals
* max_eig_stat and max_eig_stat_crit_vals
Notes
-----
The implementation might change to make more use of the existing VECM
framework.
See Also
--------
statsmodels.tsa.vector_ar.vecm.select_coint_rank
References
----------
.. [1] Lütkepohl, H. 2005. New Introduction to Multiple Time Series
Analysis. Springer.
"""
import warnings
if det_order not in [-1, 0, 1]:
warnings.warn(
"Critical values are only available for a det_order of "
"-1, 0, or 1.",
category=HypothesisTestWarning,
stacklevel=2,
)
if endog.shape[1] > 12: # todo: test with a time series of 13 variables
warnings.warn(
"Critical values are only available for time series "
"with 12 variables at most.",
category=HypothesisTestWarning,
stacklevel=2,
)
from statsmodels.regression.linear_model import OLS
def detrend(y, order):
if order == -1:
return y
return (
OLS(y, np.vander(np.linspace(-1, 1, len(y)), order + 1))
.fit()
.resid
)
def resid(y, x):
if x.size == 0:
return y
r = y - np.dot(x, np.dot(np.linalg.pinv(x), y))
return r
endog = np.asarray(endog)
nobs, neqs = endog.shape
# why this? f is detrend transformed series, det_order is detrend data
if det_order > -1:
f = 0
else:
f = det_order
endog = detrend(endog, det_order)
dx = np.diff(endog, 1, axis=0)
z = lagmat(dx, k_ar_diff)
z = z[k_ar_diff:]
z = detrend(z, f)
dx = dx[k_ar_diff:]
dx = detrend(dx, f)
r0t = resid(dx, z)
# GH 5731, [:-0] does not work, need [:t-0]
lx = endog[: (endog.shape[0] - k_ar_diff)]
lx = lx[1:]
dx = detrend(lx, f)
rkt = resid(dx, z) # level on lagged diffs
# Level covariance after filtering k_ar_diff
skk = np.dot(rkt.T, rkt) / rkt.shape[0]
# Covariacne between filtered and unfiltered
sk0 = np.dot(rkt.T, r0t) / rkt.shape[0]
s00 = np.dot(r0t.T, r0t) / r0t.shape[0]
sig = np.dot(sk0, np.dot(inv(s00), sk0.T))
tmp = inv(skk)
au, du = np.linalg.eig(np.dot(tmp, sig)) # au is eval, du is evec
temp = inv(np.linalg.cholesky(np.dot(du.T, np.dot(skk, du))))
dt = np.dot(du, temp)
# JP: the next part can be done much easier
auind = np.argsort(au)
aind = np.flipud(auind)
a = au[aind]
d = dt[:, aind]
# Normalize by first non-zero element of d, usually [0, 0]
# GH 5517
non_zero_d = d.flat != 0
if np.any(non_zero_d):
d *= np.sign(d.flat[non_zero_d][0])
# Compute the trace and max eigenvalue statistics
lr1 = np.zeros(neqs)
lr2 = np.zeros(neqs)
cvm = np.zeros((neqs, 3))
cvt = np.zeros((neqs, 3))
iota = np.ones(neqs)
t, junk = rkt.shape
for i in range(0, neqs):
tmp = np.log(iota - a)[i:]
lr1[i] = -t * np.sum(tmp, 0)
lr2[i] = -t * np.log(1 - a[i])
cvm[i, :] = c_sja(neqs - i, det_order)
cvt[i, :] = c_sjt(neqs - i, det_order)
aind[i] = i
return JohansenTestResult(rkt, r0t, a, d, lr1, lr2, cvt, cvm, aind)
[docs]
class JohansenTestResult:
"""
Results class for Johansen's cointegration test
Notes
-----
See p. 292 in [1]_ for r0t and rkt
References
----------
.. [1] Lütkepohl, H. 2005. New Introduction to Multiple Time Series
Analysis. Springer.
"""
def __init__(self, rkt, r0t, eig, evec, lr1, lr2, cvt, cvm, ind):
self._meth = "johansen"
self._rkt = rkt
self._r0t = r0t
self._eig = eig
self._evec = evec
self._lr1 = lr1
self._lr2 = lr2
self._cvt = cvt
self._cvm = cvm
self._ind = ind
@property
def rkt(self):
"""Residuals for :math:`Y_{-1}`"""
return self._rkt
@property
def r0t(self):
"""Residuals for :math:`\\Delta Y`."""
return self._r0t
@property
def eig(self):
"""Eigenvalues of VECM coefficient matrix"""
return self._eig
@property
def evec(self):
"""Eigenvectors of VECM coefficient matrix"""
return self._evec
@property
def trace_stat(self):
"""Trace statistic"""
return self._lr1
@property
def lr1(self):
"""Trace statistic"""
return self._lr1
@property
def max_eig_stat(self):
"""Maximum eigenvalue statistic"""
return self._lr2
@property
def lr2(self):
"""Maximum eigenvalue statistic"""
return self._lr2
@property
def trace_stat_crit_vals(self):
"""Critical values (90%, 95%, 99%) of trace statistic"""
return self._cvt
@property
def cvt(self):
"""Critical values (90%, 95%, 99%) of trace statistic"""
return self._cvt
@property
def cvm(self):
"""Critical values (90%, 95%, 99%) of maximum eigenvalue statistic."""
return self._cvm
@property
def max_eig_stat_crit_vals(self):
"""Critical values (90%, 95%, 99%) of maximum eigenvalue statistic."""
return self._cvm
@property
def ind(self):
"""Order of eigenvalues"""
return self._ind
@property
def meth(self):
"""Test method"""
return self._meth
[docs]
class VECM(tsbase.TimeSeriesModel):
"""
Class representing a Vector Error Correction Model (VECM).
A VECM(:math:`k_{ar}-1`) has the following form
.. math:: \\Delta y_t = \\Pi y_{t-1} + \\Gamma_1 \\Delta y_{t-1} + \\ldots + \\Gamma_{k_{ar}-1} \\Delta y_{t-k_{ar}+1} + u_t
where
.. math:: \\Pi = \\alpha \\beta'
as described in chapter 7 of [1]_.
Parameters
----------
endog : array_like (nobs_tot x neqs)
2-d endogenous response variable.
exog : ndarray (nobs_tot x neqs) or None
Deterministic terms outside the cointegration relation.
exog_coint : ndarray (nobs_tot x neqs) or None
Deterministic terms inside the cointegration relation.
dates : array_like of datetime, optional
See :class:`statsmodels.tsa.base.tsa_model.TimeSeriesModel` for more
information.
freq : str, optional
See :class:`statsmodels.tsa.base.tsa_model.TimeSeriesModel` for more
information.
missing : str, optional
See :class:`statsmodels.base.model.Model` for more information.
k_ar_diff : int
Number of lagged differences in the model. Equals :math:`k_{ar} - 1` in
the formula above.
coint_rank : int
Cointegration rank, equals the rank of the matrix :math:`\\Pi` and the
number of columns of :math:`\\alpha` and :math:`\\beta`.
deterministic : str {``"n"``, ``"co"``, ``"ci"``, ``"lo"``, ``"li"``}
* ``"n"`` - no deterministic terms
* ``"co"`` - constant outside the cointegration relation
* ``"ci"`` - constant within the cointegration relation
* ``"lo"`` - linear trend outside the cointegration relation
* ``"li"`` - linear trend within the cointegration relation
Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for
linear trend with intercept). When using a constant term you have to
choose whether you want to restrict it to the cointegration relation
(i.e. ``"ci"``) or leave it unrestricted (i.e. ``"co"``). Do not use
both ``"ci"`` and ``"co"``. The same applies for ``"li"`` and ``"lo"``
when using a linear term. See the Notes-section for more information.
seasons : int, default: 0
Number of periods in a seasonal cycle. 0 means no seasons.
first_season : int, default: 0
Season of the first observation.
Notes
-----
A VECM(:math:`k_{ar} - 1`) with deterministic terms has the form
.. math::
\\Delta y_t = \\alpha \\begin{pmatrix}\\beta' & \\eta'\\end{pmatrix} \\begin{pmatrix}y_{t-1}\\\\D^{co}_{t-1}\\end{pmatrix} + \\Gamma_1 \\Delta y_{t-1} + \\dots + \\Gamma_{k_{ar}-1} \\Delta y_{t-k_{ar}+1} + C D_t + u_t.
In :math:`D^{co}_{t-1}` we have the deterministic terms which are inside
the cointegration relation (or restricted to the cointegration relation).
:math:`\\eta` is the corresponding estimator. To pass a deterministic term
inside the cointegration relation, we can use the `exog_coint` argument.
For the two special cases of an intercept and a linear trend there exists
a simpler way to declare these terms: we can pass ``"ci"`` and ``"li"``
respectively to the `deterministic` argument. So for an intercept inside
the cointegration relation we can either pass ``"ci"`` as `deterministic`
or `np.ones(len(data))` as `exog_coint` if `data` is passed as the
`endog` argument. This ensures that :math:`D_{t-1}^{co} = 1` for all
:math:`t`.
We can also use deterministic terms outside the cointegration relation.
These are defined in :math:`D_t` in the formula above with the
corresponding estimators in the matrix :math:`C`. We specify such terms by
passing them to the `exog` argument. For an intercept and/or linear trend
we again have the possibility to use `deterministic` alternatively. For
an intercept we pass ``"co"`` and for a linear trend we pass ``"lo"`` where
the `o` stands for `outside`.
The following table shows the five cases considered in [2]_. The last
column indicates which string to pass to the `deterministic` argument for
each of these cases.
==== =============================== =================================== =============
Case Intercept Slope of the linear trend `deterministic`
==== =============================== =================================== =============
I 0 0 ``"n"``
II :math:`- \\alpha \\beta^T \\mu` 0 ``"ci"``
III :math:`\\neq 0` 0 ``"co"``
IV :math:`\\neq 0` :math:`- \\alpha \\beta^T \\gamma` ``"coli"``
V :math:`\\neq 0` :math:`\\neq 0` ``"colo"``
==== =============================== =================================== =============
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
.. [2] Johansen, S. 1995. *Likelihood-Based Inference in Cointegrated *
*Vector Autoregressive Models*. Oxford University Press.
"""
def __init__(
self,
endog,
exog=None,
exog_coint=None,
dates=None,
freq=None,
missing="none",
k_ar_diff=1,
coint_rank=1,
deterministic="n",
seasons=0,
first_season=0,
):
super().__init__(endog, exog, dates, freq, missing=missing)
if (
exog_coint is not None
and not exog_coint.shape[0] == endog.shape[0]
):
raise ValueError("exog_coint must have as many rows as enodg_tot!")
if self.endog.ndim == 1:
raise ValueError("Only gave one variable to VECM")
self.y = self.endog.T
self.exog_coint = exog_coint
self.neqs = self.endog.shape[1]
self.k_ar = k_ar_diff + 1
self.k_ar_diff = k_ar_diff
self.coint_rank = coint_rank
self.deterministic = deterministic
self.seasons = seasons
self.first_season = first_season
self.load_coef_repr = "ec" # name for loading coef. (alpha) in summary
[docs]
def fit(self, method="ml"):
"""
Estimates the parameters of a VECM.
The estimation procedure is described on pp. 269-304 in [1]_.
Parameters
----------
method : str {"ml"}, default: "ml"
Estimation method to use. "ml" stands for Maximum Likelihood.
Returns
-------
est : :class:`VECMResults`
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
if method == "ml":
return self._estimate_vecm_ml()
else:
raise ValueError(
"{} not recognized, must be among {}".format(method, "ml")
)
def _estimate_vecm_ml(self):
y_1_T, delta_y_1_T, y_lag1, delta_x = _endog_matrices(
self.y,
self.exog,
self.exog_coint,
self.k_ar_diff,
self.deterministic,
self.seasons,
self.first_season,
)
T = y_1_T.shape[1]
s00, s01, s10, s11, s11_, _, v = _sij(delta_x, delta_y_1_T, y_lag1)
beta_tilde = (v[:, : self.coint_rank].T.dot(s11_)).T
beta_tilde = np.real_if_close(beta_tilde)
# normalize beta tilde such that eye(r) forms the first r rows of it:
beta_tilde = np.dot(beta_tilde, inv(beta_tilde[: self.coint_rank]))
alpha_tilde = s01.dot(beta_tilde).dot(
inv(beta_tilde.T.dot(s11).dot(beta_tilde))
)
gamma_tilde = (
(delta_y_1_T - alpha_tilde.dot(beta_tilde.T).dot(y_lag1))
.dot(delta_x.T)
.dot(inv(np.dot(delta_x, delta_x.T)))
)
temp = (
delta_y_1_T
- alpha_tilde.dot(beta_tilde.T).dot(y_lag1)
- gamma_tilde.dot(delta_x)
)
sigma_u_tilde = temp.dot(temp.T) / T
return VECMResults(
self.y,
self.exog,
self.exog_coint,
self.k_ar,
self.coint_rank,
alpha_tilde,
beta_tilde,
gamma_tilde,
sigma_u_tilde,
deterministic=self.deterministic,
seasons=self.seasons,
delta_y_1_T=delta_y_1_T,
y_lag1=y_lag1,
delta_x=delta_x,
model=self,
names=self.endog_names,
dates=self.data.dates,
first_season=self.first_season,
)
@property
def _lagged_param_names(self):
"""
Returns parameter names (for Gamma and deterministics) for the summary.
Returns
-------
param_names : list of str
Returns a list of parameter names for the lagged endogenous
parameters which are called :math:`\\Gamma` in [1]_
(see chapter 6).
If present in the model, also names for deterministic terms outside
the cointegration relation are returned. They name the elements of
the matrix C in [1]_ (p. 299).
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
param_names = []
# 1. Deterministic terms outside cointegration relation
if "co" in self.deterministic:
param_names += ["const.%s" % n for n in self.endog_names]
if self.seasons > 0:
param_names += [
"season%d.%s" % (s, n)
for s in range(1, self.seasons)
for n in self.endog_names
]
if "lo" in self.deterministic:
param_names += ["lin_trend.%s" % n for n in self.endog_names]
if self.exog is not None:
param_names += [
"exog%d.%s" % (exog_no, n)
for exog_no in range(1, self.exog.shape[1] + 1)
for n in self.endog_names
]
# 2. lagged endogenous terms
param_names += [
"L%d.%s.%s" % (i + 1, n1, n2)
for n2 in self.endog_names
for i in range(self.k_ar_diff)
for n1 in self.endog_names
]
return param_names
@property
def _load_coef_param_names(self):
"""
Returns parameter names (for alpha) for the summary.
Returns
-------
param_names : list of str
Returns a list of parameter names for the loading coefficients
which are called :math:`\\alpha` in [1]_ (see chapter 6).
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
param_names = []
if self.coint_rank == 0:
return None
# loading coefficients (alpha) # called "ec" in JMulTi, "ECT" in tsDyn,
param_names += [ # and "_ce" in Stata
self.load_coef_repr + "%d.%s" % (i + 1, self.endog_names[j])
for j in range(self.neqs)
for i in range(self.coint_rank)
]
return param_names
@property
def _coint_param_names(self):
"""
Returns parameter names (for beta and deterministics) for the summary.
Returns
-------
param_names : list of str
Returns a list of parameter names for the cointegration matrix
as well as deterministic terms inside the cointegration relation
(if present in the model).
"""
# 1. cointegration matrix/vector
param_names = []
param_names += [
("beta.%d." + self.load_coef_repr + "%d") % (j + 1, i + 1)
for i in range(self.coint_rank)
for j in range(self.neqs)
]
# 2. deterministic terms inside cointegration relation
if "ci" in self.deterministic:
param_names += [
"const." + self.load_coef_repr + "%d" % (i + 1)
for i in range(self.coint_rank)
]
if "li" in self.deterministic:
param_names += [
"lin_trend." + self.load_coef_repr + "%d" % (i + 1)
for i in range(self.coint_rank)
]
if self.exog_coint is not None:
param_names += [
"exog_coint%d.%s" % (n + 1, exog_no)
for exog_no in range(1, self.exog_coint.shape[1] + 1)
for n in range(self.neqs)
]
return param_names
[docs]
class VECMResults:
"""Class for holding estimation related results of a vector error
correction model (VECM).
Parameters
----------
endog : ndarray (neqs x nobs_tot)
Array of observations.
exog : ndarray (nobs_tot x neqs) or `None`
Deterministic terms outside the cointegration relation.
exog_coint : ndarray (nobs_tot x neqs) or `None`
Deterministic terms inside the cointegration relation.
k_ar : int, >= 1
Lags in the VAR representation. This implies that the number of lags in
the VEC representation (=lagged differences) equals :math:`k_{ar} - 1`.
coint_rank : int, 0 <= `coint_rank` <= neqs
Cointegration rank, equals the rank of the matrix :math:`\\Pi` and the
number of columns of :math:`\\alpha` and :math:`\\beta`.
alpha : ndarray (neqs x `coint_rank`)
Estimate for the parameter :math:`\\alpha` of a VECM.
beta : ndarray (neqs x `coint_rank`)
Estimate for the parameter :math:`\\beta` of a VECM.
gamma : ndarray (neqs x neqs*(k_ar-1))
Array containing the estimates of the :math:`k_{ar}-1` parameter
matrices :math:`\\Gamma_1, \\dots, \\Gamma_{k_{ar}-1}` of a
VECM(:math:`k_{ar}-1`). The submatrices are stacked horizontally from
left to right.
sigma_u : ndarray (neqs x neqs)
Estimate of white noise process covariance matrix :math:`\\Sigma_u`.
deterministic : str {``"n"``, ``"co"``, ``"ci"``, ``"lo"``, ``"li"``}
* ``"n"`` - no deterministic terms
* ``"co"`` - constant outside the cointegration relation
* ``"ci"`` - constant within the cointegration relation
* ``"lo"`` - linear trend outside the cointegration relation
* ``"li"`` - linear trend within the cointegration relation
Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for
linear trend with intercept). See the docstring of the
:class:`VECM`-class for more information.
seasons : int, default: 0
Number of periods in a seasonal cycle. 0 means no seasons.
first_season : int, default: 0
Season of the first observation.
delta_y_1_T : ndarray or `None`, default: `None`
Auxiliary array for internal computations. It will be calculated if
not given as parameter.
y_lag1 : ndarray or `None`, default: `None`
Auxiliary array for internal computations. It will be calculated if
not given as parameter.
delta_x : ndarray or `None`, default: `None`
Auxiliary array for internal computations. It will be calculated if
not given as parameter.
model : :class:`VECM`
An instance of the :class:`VECM`-class.
names : list of str
Each str in the list represents the name of a variable of the time
series.
dates : array_like
For example a DatetimeIndex of length nobs_tot.
Attributes
----------
nobs : int
Number of observations (excluding the presample).
model : see Parameters
y_all : see `endog` in Parameters
exog : see Parameters
exog_coint : see Parameters
names : see Parameters
dates : see Parameters
neqs : int
Number of variables in the time series.
k_ar : see Parameters
deterministic : see Parameters
seasons : see Parameters
first_season : see Parameters
alpha : see Parameters
beta : see Parameters
gamma : see Parameters
sigma_u : see Parameters
det_coef_coint : ndarray (#(determinist. terms inside the coint. rel.) x `coint_rank`)
Estimated coefficients for the all deterministic terms inside the
cointegration relation.
const_coint : ndarray (1 x `coint_rank`)
If there is a constant deterministic term inside the cointegration
relation, then `const_coint` is the first row of `det_coef_coint`.
Otherwise it's an ndarray of zeros.
lin_trend_coint : ndarray (1 x `coint_rank`)
If there is a linear deterministic term inside the cointegration
relation, then `lin_trend_coint` contains the corresponding estimated
coefficients. As such it represents the corresponding row of
`det_coef_coint`. If there is no linear deterministic term inside
the cointegration relation, then `lin_trend_coint` is an ndarray of
zeros.
exog_coint_coefs : ndarray (exog_coint.shape[1] x `coint_rank`) or `None`
If deterministic terms inside the cointegration relation are passed via
the `exog_coint` parameter, then `exog_coint_coefs` contains the
corresponding estimated coefficients. As such `exog_coint_coefs`
represents the last rows of `det_coef_coint`.
If no deterministic terms were passed via the `exog_coint` parameter,
this attribute is `None`.
det_coef : ndarray (neqs x #(deterministic terms outside the coint. rel.))
Estimated coefficients for the all deterministic terms outside the
cointegration relation.
const : ndarray (neqs x 1) or (neqs x 0)
If a constant deterministic term outside the cointegration is specified
within the deterministic parameter, then `const` is the first column
of `det_coef_coint`. Otherwise it's an ndarray of size zero.
seasonal : ndarray (neqs x seasons)
If the `seasons` parameter is > 0, then seasonal contains the
estimated coefficients corresponding to the seasonal terms. Otherwise
it's an ndarray of size zero.
lin_trend : ndarray (neqs x 1) or (neqs x 0)
If a linear deterministic term outside the cointegration is specified
within the deterministic parameter, then `lin_trend` contains the
corresponding estimated coefficients. As such it represents the
corresponding column of `det_coef_coint`. If there is no linear
deterministic term outside the cointegration relation, then
`lin_trend` is an ndarray of size zero.
exog_coefs : ndarray (neqs x exog_coefs.shape[1])
If deterministic terms outside the cointegration relation are passed
via the `exog` parameter, then `exog_coefs` contains the
corresponding estimated coefficients. As such `exog_coefs` represents
the last columns of `det_coef`.
If no deterministic terms were passed via the `exog` parameter, this
attribute is an ndarray of size zero.
_delta_y_1_T : see delta_y_1_T in Parameters
_y_lag1 : see y_lag1 in Parameters
_delta_x : see delta_x in Parameters
coint_rank : int
Cointegration rank, equals the rank of the matrix :math:`\\Pi` and the
number of columns of :math:`\\alpha` and :math:`\\beta`.
llf : float
The model's log-likelihood.
cov_params : ndarray (d x d)
Covariance matrix of the parameters. The number of rows and columns, d
(used in the dimension specification of this argument),
is equal to neqs * (neqs+num_det_coef_coint + neqs*(k_ar-1)+number of
deterministic dummy variables outside the cointegration relation). For
the case with no deterministic terms this matrix is defined on p. 287
in [1]_ as :math:`\\Sigma_{co}` and its relationship to the
ML-estimators can be seen in eq. (7.2.21) on p. 296 in [1]_.
cov_params_wo_det : ndarray
Covariance matrix of the parameters
:math:`\\tilde{\\Pi}, \\tilde{\\Gamma}` where
:math:`\\tilde{\\Pi} = \\tilde{\\alpha} \\tilde{\\beta'}`.
Equals `cov_params` without the rows and columns related to
deterministic terms. This matrix is defined as :math:`\\Sigma_{co}` on
p. 287 in [1]_.
stderr_params : ndarray (d)
Array containing the standard errors of :math:`\\Pi`, :math:`\\Gamma`,
and estimated parameters related to deterministic terms.
stderr_coint : ndarray (neqs+num_det_coef_coint x `coint_rank`)
Array containing the standard errors of :math:`\\beta` and estimated
parameters related to deterministic terms inside the cointegration
relation.
stderr_alpha : ndarray (neqs x `coint_rank`)
The standard errors of :math:`\\alpha`.
stderr_beta : ndarray (neqs x `coint_rank`)
The standard errors of :math:`\\beta`.
stderr_det_coef_coint : ndarray (num_det_coef_coint x `coint_rank`)
The standard errors of estimated the parameters related to
deterministic terms inside the cointegration relation.
stderr_gamma : ndarray (neqs x neqs*(k_ar-1))
The standard errors of :math:`\\Gamma_1, \\ldots, \\Gamma_{k_{ar}-1}`.
stderr_det_coef : ndarray (neqs x det. terms outside the coint. relation)
The standard errors of estimated the parameters related to
deterministic terms outside the cointegration relation.
tvalues_alpha : ndarray (neqs x `coint_rank`)
tvalues_beta : ndarray (neqs x `coint_rank`)
tvalues_det_coef_coint : ndarray (num_det_coef_coint x `coint_rank`)
tvalues_gamma : ndarray (neqs x neqs*(k_ar-1))
tvalues_det_coef : ndarray (neqs x det. terms outside the coint. relation)
pvalues_alpha : ndarray (neqs x `coint_rank`)
pvalues_beta : ndarray (neqs x `coint_rank`)
pvalues_det_coef_coint : ndarray (num_det_coef_coint x `coint_rank`)
pvalues_gamma : ndarray (neqs x neqs*(k_ar-1))
pvalues_det_coef : ndarray (neqs x det. terms outside the coint. relation)
var_rep : (k_ar x neqs x neqs)
KxK parameter matrices :math:`A_i` of the corresponding VAR
representation. If the return value is assigned to a variable ``A``,
these matrices can be accessed via ``A[i]`` for
:math:`i=0, \\ldots, k_{ar}-1`.
cov_var_repr : ndarray (neqs**2 * k_ar x neqs**2 * k_ar)
This matrix is called :math:`\\Sigma^{co}_{\\alpha}` on p. 289 in [1]_.
It is needed e.g. for impulse-response-analysis.
fittedvalues : ndarray (nobs x neqs)
The predicted in-sample values of the models' endogenous variables.
resid : ndarray (nobs x neqs)
The residuals.
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
def __init__(
self,
endog,
exog,
exog_coint,
k_ar,
coint_rank,
alpha,
beta,
gamma,
sigma_u,
deterministic="n",
seasons=0,
first_season=0,
delta_y_1_T=None,
y_lag1=None,
delta_x=None,
model=None,
names=None,
dates=None,
):
self.model = model
self.y_all = endog
self.exog = exog
self.exog_coint = exog_coint
self.names = names
self.dates = dates
self.neqs = endog.shape[0]
self.k_ar = k_ar
deterministic = string_like(deterministic, "deterministic")
self.deterministic = deterministic
self.seasons = seasons
self.first_season = first_season
self.coint_rank = coint_rank
if alpha.dtype == np.complex128 and np.all(np.imag(alpha) == 0):
alpha = np.real_if_close(alpha)
if beta.dtype == np.complex128 and np.all(np.imag(beta) == 0):
beta = np.real_if_close(beta)
if gamma.dtype == np.complex128 and np.all(np.imag(gamma) == 0):
gamma = np.real_if_close(gamma)
self.alpha = alpha
self.beta, self.det_coef_coint = np.vsplit(beta, [self.neqs])
self.gamma, self.det_coef = np.hsplit(
gamma, [self.neqs * (self.k_ar - 1)]
)
if "ci" in deterministic:
self.const_coint = self.det_coef_coint[:1, :]
else:
self.const_coint = np.zeros(coint_rank).reshape((1, -1))
if "li" in deterministic:
start = 1 if "ci" in deterministic else 0
self.lin_trend_coint = self.det_coef_coint[start : start + 1, :]
else:
self.lin_trend_coint = np.zeros(coint_rank).reshape(1, -1)
if self.exog_coint is not None:
start = ("ci" in deterministic) + ("li" in deterministic)
self.exog_coint_coefs = self.det_coef_coint[start:, :]
else:
self.exog_coint_coefs = None
split_const_season = 1 if "co" in deterministic else 0
split_season_lin = split_const_season + (
(seasons - 1) if seasons else 0
)
if "lo" in deterministic:
split_lin_exog = split_season_lin + 1
else:
split_lin_exog = split_season_lin
self.const, self.seasonal, self.lin_trend, self.exog_coefs = np.hsplit(
self.det_coef,
[split_const_season, split_season_lin, split_lin_exog],
)
self.sigma_u = sigma_u
if (
y_lag1 is not None
and delta_x is not None
and delta_y_1_T is not None
):
self._delta_y_1_T = delta_y_1_T
self._y_lag1 = y_lag1
self._delta_x = delta_x
else:
(
_y_1_T,
self._delta_y_1_T,
self._y_lag1,
self._delta_x,
) = _endog_matrices(endog, self.exog, k_ar, deterministic, seasons)
self.nobs = self._y_lag1.shape[1]
@cache_readonly
def llf(self): # Lutkepohl p. 295 (7.2.20)
"""
Compute the VECM's loglikelihood.
"""
K = self.neqs
T = self.nobs
r = self.coint_rank
s00, _, _, _, _, lambd, _ = _sij(
self._delta_x, self._delta_y_1_T, self._y_lag1
)
return (
-K * T * np.log(2 * np.pi) / 2
- T * (np.log(np.linalg.det(s00)) + sum(np.log(1 - lambd)[:r])) / 2
- K * T / 2
)
@cache_readonly
def _cov_sigma(self):
sigma_u = self.sigma_u
d = duplication_matrix(self.neqs)
d_K_plus = np.linalg.pinv(d)
# compare p. 93, 297 Lutkepohl (2005)
return 2 * (d_K_plus @ np.kron(sigma_u, sigma_u) @ d_K_plus.T)
@cache_readonly
def cov_params_default(self): # p.296 (7.2.21)
# Sigma_co described on p. 287
beta = self.beta
if self.det_coef_coint.size > 0:
beta = vstack((beta, self.det_coef_coint))
dt = self.deterministic
num_det = ("co" in dt) + ("lo" in dt)
num_det += (self.seasons - 1) if self.seasons else 0
if self.exog is not None:
num_det += self.exog.shape[1]
b_id = scipy.linalg.block_diag(
beta, np.identity(self.neqs * (self.k_ar - 1) + num_det)
)
y_lag1 = self._y_lag1
b_y = beta.T.dot(y_lag1)
omega11 = b_y.dot(b_y.T)
omega12 = b_y.dot(self._delta_x.T)
omega21 = omega12.T
omega22 = self._delta_x.dot(self._delta_x.T)
omega = np.bmat([[omega11, omega12], [omega21, omega22]]).A
mat1 = b_id.dot(inv(omega)).dot(b_id.T)
return np.kron(mat1, self.sigma_u)
@cache_readonly
def cov_params_wo_det(self):
# rows & cols to be dropped (related to deterministic terms inside the
# cointegration relation)
start_i = self.neqs ** 2 # first elements belong to alpha @ beta.T
end_i = start_i + self.neqs * self.det_coef_coint.shape[0]
to_drop_i = np.arange(start_i, end_i)
# rows & cols to be dropped (related to deterministic terms outside of
# the cointegration relation)
cov = self.cov_params_default
cov_size = len(cov)
to_drop_o = np.arange(cov_size - self.det_coef.size, cov_size)
to_drop = np.union1d(to_drop_i, to_drop_o)
mask = np.ones(cov.shape, dtype=bool)
mask[to_drop] = False
mask[:, to_drop] = False
cov_size_new = mask.sum(axis=0)[0]
return cov[mask].reshape((cov_size_new, cov_size_new))
# standard errors:
@cache_readonly
def stderr_params(self):
return np.sqrt(np.diag(self.cov_params_default))
@cache_readonly
def stderr_coint(self):
"""
Standard errors of beta and deterministic terms inside the
cointegration relation.
Notes
-----
See p. 297 in [1]_. Using the rule
.. math::
vec(B R) = (B' \\otimes I) vec(R)
for two matrices B and R which are compatible for multiplication.
This is rule (3) on p. 662 in [1]_.
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
r = self.coint_rank
_, r1 = _r_matrices(self._delta_y_1_T, self._y_lag1, self._delta_x)
r12 = r1[r:]
if r12.size == 0:
return np.zeros((r, r))
mat1 = inv(r12.dot(r12.T))
mat1 = np.kron(mat1.T, np.identity(r))
det = self.det_coef_coint.shape[0]
mat2 = np.kron(
np.identity(self.neqs - r + det),
inv(self.alpha.T @ inv(self.sigma_u) @ self.alpha),
)
first_rows = np.zeros((r, r))
last_rows_1d = np.sqrt(np.diag(mat1.dot(mat2)))
last_rows = last_rows_1d.reshape((self.neqs - r + det, r), order="F")
return vstack((first_rows, last_rows))
@cache_readonly
def stderr_alpha(self):
ret_1dim = self.stderr_params[: self.alpha.size]
return ret_1dim.reshape(self.alpha.shape, order="F")
@cache_readonly
def stderr_beta(self):
ret_1dim = self.stderr_coint[: self.beta.shape[0]]
return ret_1dim.reshape(self.beta.shape, order="F")
@cache_readonly
def stderr_det_coef_coint(self):
if self.det_coef_coint.size == 0:
return self.det_coef_coint # 0-size array
ret_1dim = self.stderr_coint[self.beta.shape[0] :]
return ret_1dim.reshape(self.det_coef_coint.shape, order="F")
@cache_readonly
def stderr_gamma(self):
start = self.alpha.shape[0] * (
self.beta.shape[0] + self.det_coef_coint.shape[0]
)
ret_1dim = self.stderr_params[start : start + self.gamma.size]
return ret_1dim.reshape(self.gamma.shape, order="F")
@cache_readonly
def stderr_det_coef(self):
if self.det_coef.size == 0:
return self.det_coef # 0-size array
ret1_1dim = self.stderr_params[-self.det_coef.size :]
return ret1_1dim.reshape(self.det_coef.shape, order="F")
# t-values:
@cache_readonly
def tvalues_alpha(self):
return self.alpha / self.stderr_alpha
@cache_readonly
def tvalues_beta(self):
r = self.coint_rank
first_rows = np.zeros((r, r))
last_rows = self.beta[r:] / self.stderr_beta[r:]
return vstack((first_rows, last_rows))
@cache_readonly
def tvalues_det_coef_coint(self):
if self.det_coef_coint.size == 0:
return self.det_coef_coint # 0-size array
return self.det_coef_coint / self.stderr_det_coef_coint
@cache_readonly
def tvalues_gamma(self):
return self.gamma / self.stderr_gamma
@cache_readonly
def tvalues_det_coef(self):
if self.det_coef.size == 0:
return self.det_coef # 0-size array
return self.det_coef / self.stderr_det_coef
# p-values:
@cache_readonly
def pvalues_alpha(self):
return (1 - scipy.stats.norm.cdf(abs(self.tvalues_alpha))) * 2
@cache_readonly
def pvalues_beta(self):
first_rows = np.zeros((self.coint_rank, self.coint_rank))
tval_last = self.tvalues_beta[self.coint_rank :]
last_rows = (1 - scipy.stats.norm.cdf(abs(tval_last))) * 2 # student-t
return vstack((first_rows, last_rows))
@cache_readonly
def pvalues_det_coef_coint(self):
if self.det_coef_coint.size == 0:
return self.det_coef_coint # 0-size array
return (1 - scipy.stats.norm.cdf(abs(self.tvalues_det_coef_coint))) * 2
@cache_readonly
def pvalues_gamma(self):
return (1 - scipy.stats.norm.cdf(abs(self.tvalues_gamma))) * 2
@cache_readonly
def pvalues_det_coef(self):
if self.det_coef.size == 0:
return self.det_coef # 0-size array
return (1 - scipy.stats.norm.cdf(abs(self.tvalues_det_coef))) * 2
# confidence intervals
def _make_conf_int(self, est, stderr, alpha):
struct_arr = np.zeros(
est.shape, dtype=[("lower", float), ("upper", float)]
)
struct_arr["lower"] = (
est - scipy.stats.norm.ppf(1 - alpha / 2) * stderr
)
struct_arr["upper"] = (
est + scipy.stats.norm.ppf(1 - alpha / 2) * stderr
)
return struct_arr
[docs]
def conf_int_alpha(self, alpha=0.05):
return self._make_conf_int(self.alpha, self.stderr_alpha, alpha)
[docs]
def conf_int_beta(self, alpha=0.05):
return self._make_conf_int(self.beta, self.stderr_beta, alpha)
[docs]
def conf_int_det_coef_coint(self, alpha=0.05):
return self._make_conf_int(
self.det_coef_coint, self.stderr_det_coef_coint, alpha
)
[docs]
def conf_int_gamma(self, alpha=0.05):
return self._make_conf_int(self.gamma, self.stderr_gamma, alpha)
[docs]
def conf_int_det_coef(self, alpha=0.05):
return self._make_conf_int(self.det_coef, self.stderr_det_coef, alpha)
@cache_readonly
def var_rep(self):
pi = self.alpha.dot(self.beta.T)
gamma = self.gamma
K = self.neqs
A = np.zeros((self.k_ar, K, K))
A[0] = pi + np.identity(K)
if self.gamma.size > 0:
A[0] += gamma[:, :K]
A[self.k_ar - 1] = -gamma[:, K * (self.k_ar - 2) :]
for i in range(1, self.k_ar - 1):
A[i] = (
gamma[:, K * i : K * (i + 1)]
- gamma[:, K * (i - 1) : K * i]
)
return A
@cache_readonly
def cov_var_repr(self):
"""
Gives the covariance matrix of the corresponding VAR-representation.
More precisely, the covariance matrix of the vector consisting of the
columns of the corresponding VAR coefficient matrices (i.e.
vec(self.var_rep)).
Returns
-------
cov : array (neqs**2 * k_ar x neqs**2 * k_ar)
"""
# This implementation is using the fact that for a random variable x
# with covariance matrix Sigma_x the following holds:
# B @ x with B being a suitably sized matrix has the covariance matrix
# B @ Sigma_x @ B.T. The arrays called vecm_var_transformation and
# self.cov_params_wo_det in the code play the roles of B and Sigma_x
# respectively. The elements of the random variable x are the elements
# of the estimated matrices Pi (alpha @ beta.T) and Gamma.
# Alternatively the following code (commented out) would yield the same
# result (following p. 289 in Lutkepohl):
# K, p = self.neqs, self.k_ar
# w = np.identity(K * p)
# w[np.arange(K, len(w)), np.arange(K, len(w))] *= (-1)
# w[np.arange(K, len(w)), np.arange(len(w)-K)] = 1
#
# w_eye = np.kron(w, np.identity(K))
#
# return w_eye.T @ self.cov_params_default @ w_eye
if self.k_ar - 1 == 0:
return self.cov_params_wo_det
vecm_var_transformation = np.zeros(
(self.neqs ** 2 * self.k_ar, self.neqs ** 2 * self.k_ar)
)
eye = np.identity(self.neqs ** 2)
# for A_1:
vecm_var_transformation[
: self.neqs ** 2, : 2 * self.neqs ** 2
] = hstack((eye, eye))
# for A_i, where i = 2, ..., k_ar-1
for i in range(2, self.k_ar):
start_row = self.neqs ** 2 + (i - 2) * self.neqs ** 2
start_col = self.neqs ** 2 + (i - 2) * self.neqs ** 2
vecm_var_transformation[
start_row : start_row + self.neqs ** 2,
start_col : start_col + 2 * self.neqs ** 2,
] = hstack((-eye, eye))
# for A_p:
vecm_var_transformation[-self.neqs ** 2 :, -self.neqs ** 2 :] = -eye
vvt = vecm_var_transformation
return vvt @ self.cov_params_wo_det @ vvt.T
@cache_readonly
def _chol_sigma_u(self):
return np.linalg.cholesky(self.sigma_u)
[docs]
def orth_ma_rep(self, maxn=10, P=None):
"""Compute orthogonalized MA coefficient matrices.
For this purpose a matrix P is used which fulfills
:math:`\\Sigma_u = PP^\\prime`. P defaults to the Cholesky
decomposition of :math:`\\Sigma_u`
Parameters
----------
maxn : int
Number of coefficient matrices to compute
P : ndarray (neqs x neqs), optional
Matrix such that :math:`\\Sigma_u = PP'`. Defaults to Cholesky
decomposition.
Returns
-------
coefs : ndarray (maxn x neqs x neqs)
"""
return orth_ma_rep(self, maxn, P)
[docs]
def predict(self, steps=5, alpha=None, exog_fc=None, exog_coint_fc=None):
"""
Calculate future values of the time series.
Parameters
----------
steps : int
Prediction horizon.
alpha : float, 0 < `alpha` < 1 or None
If None, compute point forecast only.
If float, compute confidence intervals too. In this case the
argument stands for the confidence level.
exog : ndarray (steps x self.exog.shape[1])
If self.exog is not None, then information about the future values
of exog have to be passed via this parameter. The ndarray may be
larger in it's first dimension. In this case only the first steps
rows will be considered.
Returns
-------
forecast - ndarray (steps x neqs) or three ndarrays
In case of a point forecast: each row of the returned ndarray
represents the forecast of the neqs variables for a specific
period. The first row (index [0]) is the forecast for the next
period, the last row (index [steps-1]) is the steps-periods-ahead-
forecast.
"""
if self.exog is not None and exog_fc is None:
raise ValueError(
"exog_fc is None: Please pass the future values "
"of the VECM's exog terms via the exog_fc "
"argument!"
)
if self.exog is None and exog_fc is not None:
raise ValueError(
"This VECMResult-instance's exog attribute is "
"None. Please do not pass a non-None value as the "
"method's exog_fc-argument."
)
if exog_fc is not None and exog_fc.shape[0] < steps:
raise ValueError(
"The argument exog_fc must have at least steps "
"elements in its first dimension"
)
if self.exog_coint is not None and exog_coint_fc is None:
raise ValueError(
"exog_coint_fc is None: Please pass the future "
"values of the VECM's exog_coint terms via the "
"exog_coint_fc argument!"
)
if self.exog_coint is None and exog_coint_fc is not None:
raise ValueError(
"This VECMResult-instance's exog_coint attribute "
"is None. Please do not pass a non-None value as "
"the method's exog_coint_fc-argument."
)
if exog_coint_fc is not None and exog_coint_fc.shape[0] < steps - 1:
raise ValueError(
"The argument exog_coint_fc must have at least "
"steps elements in its first dimension"
)
last_observations = self.y_all.T[-self.k_ar :]
exog = []
trend_coefs = []
# adding deterministic terms outside cointegration relation
exog_const = np.ones(steps)
nobs_tot = self.nobs + self.k_ar
if self.const.size > 0:
exog.append(exog_const)
trend_coefs.append(self.const.T)
if self.seasons > 0:
first_future_season = (self.first_season + nobs_tot) % self.seasons
exog_seasonal = seasonal_dummies(
self.seasons, steps, first_future_season, True
)
exog.append(exog_seasonal)
trend_coefs.append(self.seasonal.T)
exog_lin_trend = _linear_trend(self.nobs, self.k_ar)
exog_lin_trend = exog_lin_trend[-1] + 1 + np.arange(steps)
if self.lin_trend.size > 0:
exog.append(exog_lin_trend)
trend_coefs.append(self.lin_trend.T)
if exog_fc is not None:
exog.append(exog_fc[:steps])
trend_coefs.append(self.exog_coefs.T)
# adding deterministic terms inside cointegration relation
if "ci" in self.deterministic:
exog.append(exog_const)
trend_coefs.append(self.alpha.dot(self.const_coint.T).T)
exog_lin_trend_coint = _linear_trend(self.nobs, self.k_ar, coint=True)
exog_lin_trend_coint = exog_lin_trend_coint[-1] + 1 + np.arange(steps)
if "li" in self.deterministic:
exog.append(exog_lin_trend_coint)
trend_coefs.append(self.alpha.dot(self.lin_trend_coint.T).T)
if exog_coint_fc is not None:
if exog_coint_fc.ndim == 1:
exog_coint_fc = exog_coint_fc[:, None] # make 2-D
exog_coint_fc = np.vstack(
(self.exog_coint[-1:], exog_coint_fc[: steps - 1])
)
exog.append(exog_coint_fc)
trend_coefs.append(self.alpha.dot(self.exog_coint_coefs.T).T)
# glueing all deterministics together
exog = np.column_stack(exog) if exog != [] else None
if trend_coefs != []:
trend_coefs = np.vstack(trend_coefs)
else:
trend_coefs = None
# call the forecasting function of the VAR-module
if alpha is not None:
return forecast_interval(
last_observations,
self.var_rep,
trend_coefs,
self.sigma_u,
steps,
alpha=alpha,
exog=exog,
)
else:
return forecast(
last_observations, self.var_rep, trend_coefs, steps, exog
)
[docs]
def plot_forecast(
self, steps, alpha=0.05, plot_conf_int=True, n_last_obs=None
):
"""
Plot the forecast.
Parameters
----------
steps : int
Prediction horizon.
alpha : float, 0 < `alpha` < 1
The confidence level.
plot_conf_int : bool, default: True
If True, plot bounds of confidence intervals.
n_last_obs : int or None, default: None
If int, restrict plotted history to n_last_obs observations.
If None, include the whole history in the plot.
"""
mid, lower, upper = self.predict(steps, alpha=alpha)
y = self.y_all.T
y = y[self.k_ar :] if n_last_obs is None else y[-n_last_obs:]
plot.plot_var_forc(
y,
mid,
lower,
upper,
names=self.names,
plot_stderr=plot_conf_int,
legend_options={"loc": "lower left"},
)
[docs]
def test_granger_causality(self, caused, causing=None, signif=0.05):
r"""
Test for Granger-causality.
The concept of Granger-causality is described in chapter 7.6.3 of [1]_.
Test |H0|: "The variables in `causing` do not Granger-cause those in
`caused`" against |H1|: "`causing` is Granger-causal for
`caused`".
Parameters
----------
caused : int or str or sequence of int or str
If int or str, test whether the variable specified via this index
(int) or name (str) is Granger-caused by the variable(s) specified
by `causing`.
If a sequence of int or str, test whether the corresponding
variables are Granger-caused by the variable(s) specified
by `causing`.
causing : int or str or sequence of int or str or `None`, default: `None`
If int or str, test whether the variable specified via this index
(int) or name (str) is Granger-causing the variable(s) specified by
`caused`.
If a sequence of int or str, test whether the corresponding
variables are Granger-causing the variable(s) specified by
`caused`.
If `None`, `causing` is assumed to be the complement of
`caused` (the remaining variables of the system).
signif : float, 0 < `signif` < 1, default 5 %
Significance level for computing critical values for test,
defaulting to standard 0.05 level.
Returns
-------
results : :class:`statsmodels.tsa.vector_ar.hypothesis_test_results.CausalityTestResults`
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
.. |H0| replace:: H\ :sub:`0`
.. |H1| replace:: H\ :sub:`1`
"""
if not (0 < signif < 1):
raise ValueError("signif has to be between 0 and 1")
allowed_types = (str, int)
if isinstance(caused, allowed_types):
caused = [caused]
if not all(isinstance(c, allowed_types) for c in caused):
raise TypeError(
"caused has to be of type string or int (or a "
"sequence of these types)."
)
caused = [self.names[c] if type(c) is int else c for c in caused]
caused_ind = [get_index(self.names, c) for c in caused]
if causing is not None:
if isinstance(causing, allowed_types):
causing = [causing]
if not all(isinstance(c, allowed_types) for c in causing):
raise TypeError(
"causing has to be of type string or int (or "
"a sequence of these types) or None."
)
causing = [self.names[c] if type(c) is int else c for c in causing]
causing_ind = [get_index(self.names, c) for c in causing]
if causing is None:
causing_ind = [i for i in range(self.neqs) if i not in caused_ind]
causing = [self.names[c] for c in causing_ind]
y, k, t, p = self.y_all, self.neqs, self.nobs - 1, self.k_ar + 1
exog = _deterministic_to_exog(
self.deterministic,
self.seasons,
nobs_tot=self.nobs + self.k_ar,
first_season=self.first_season,
seasons_centered=True,
exog=self.exog,
exog_coint=self.exog_coint,
)
var_results = VAR(y.T, exog).fit(maxlags=p, trend="n")
# num_restr is called N in Lutkepohl
num_restr = len(causing) * len(caused) * (p - 1)
num_det_terms = _num_det_vars(self.deterministic, self.seasons)
if self.exog is not None:
num_det_terms += self.exog.shape[1]
if self.exog_coint is not None:
num_det_terms += self.exog_coint.shape[1]
# Make restriction matrix
C = np.zeros(
(num_restr, k * num_det_terms + k ** 2 * (p - 1)), dtype=float
)
cols_det = k * num_det_terms
row = 0
for j in range(p - 1):
for ing_ind in causing_ind:
for ed_ind in caused_ind:
C[row, cols_det + ed_ind + k * ing_ind + k ** 2 * j] = 1
row += 1
Ca = np.dot(C, vec(var_results.params[:-k].T))
x_min_p_components = []
if exog is not None:
x_min_p_components.append(exog[-t:].T)
x_min_p = np.zeros((k * p, t))
for i in range(p - 1): # fll first k * k_ar rows of x_min_p
x_min_p[i * k : (i + 1) * k, :] = (
y[:, p - 1 - i : -1 - i] - y[:, :-p]
)
x_min_p[-k:, :] = y[:, :-p] # fill last rows of x_min_p
x_min_p_components.append(x_min_p)
x_min_p = np.vstack(x_min_p_components)
x_x = np.dot(x_min_p, x_min_p.T) # k*k_ar x k*k_ar
x_x_11 = inv(x_x)[
: k * (p - 1) + num_det_terms, : k * (p - 1) + num_det_terms
] # k*(k_ar-1) x k*(k_ar-1)
# For VAR-models with parameter restrictions the denominator in the
# calculation of sigma_u is nobs and not (nobs-k*k_ar-num_det_terms).
# Testing for Granger-causality means testing for restricted
# parameters, thus the former of the two denominators is used. As
# Lutkepohl states, both variants of the estimated sigma_u are
# possible. (see Lutkepohl, p.198)
# The choice of the denominator T has also the advantage of getting the
# same results as the reference software JMulTi.
sigma_u = var_results.sigma_u * (t - k * p - num_det_terms) / t
sig_alpha_min_p = t * np.kron(x_x_11, sigma_u) # k**2*(p-1)xk**2*(p-1)
middle = inv(C @ sig_alpha_min_p @ C.T)
wald_statistic = t * (Ca.T @ middle @ Ca)
f_statistic = wald_statistic / num_restr
df = (num_restr, k * var_results.df_resid)
f_distribution = scipy.stats.f(*df)
pvalue = f_distribution.sf(f_statistic)
crit_value = f_distribution.ppf(1 - signif)
return CausalityTestResults(
causing,
caused,
f_statistic,
crit_value,
pvalue,
df,
signif,
test="granger",
method="f",
)
[docs]
def test_inst_causality(self, causing, signif=0.05):
r"""
Test for instantaneous causality.
The concept of instantaneous causality is described in chapters 3.6.3
and 7.6.4 of [1]_. Test |H0|: "No instantaneous causality between the
variables in `caused` and those in `causing`" against |H1|:
"Instantaneous causality between `caused` and `causing` exists".
Note that instantaneous causality is a symmetric relation
(i.e. if `causing` is "instantaneously causing" `caused`, then also
`caused` is "instantaneously causing" `causing`), thus the naming of
the parameters (which is chosen to be in accordance with
:meth:`test_granger_causality()`) may be misleading.
Parameters
----------
causing : int or str or sequence of int or str
If int or str, test whether the corresponding variable is causing
the variable(s) specified in caused.
If sequence of int or str, test whether the corresponding variables
are causing the variable(s) specified in caused.
signif : float, 0 < `signif` < 1, default 5 %
Significance level for computing critical values for test,
defaulting to standard 0.05 level.
Returns
-------
results : :class:`statsmodels.tsa.vector_ar.hypothesis_test_results.CausalityTestResults`
Notes
-----
This method is not returning the same result as `JMulTi`. This is
because the test is based on a VAR(k_ar) model in `statsmodels` (in
accordance to pp. 104, 320-321 in [1]_) whereas `JMulTi` seems to be
using a VAR(k_ar+1) model. Reducing the lag order by one in `JMulTi`
leads to equal results in `statsmodels` and `JMulTi`.
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
.. |H0| replace:: H\ :sub:`0`
.. |H1| replace:: H\ :sub:`1`
"""
exog = _deterministic_to_exog(
self.deterministic,
self.seasons,
nobs_tot=self.nobs + self.k_ar,
first_season=self.first_season,
seasons_centered=True,
exog=self.exog,
exog_coint=self.exog_coint,
)
# Note: JMulTi seems to be using k_ar+1 instead of k_ar
p =self.k_ar
# fit with trend "n" because all trend information is already in exog
var_results = VAR(self.y_all.T, exog).fit(maxlags=p, trend="n")
var_results._results.names = self.names
return var_results.test_inst_causality(causing=causing, signif=signif)
@cache_readonly
def fittedvalues(self):
"""
Return the in-sample values of endog calculated by the model.
Returns
-------
fitted : array (nobs x neqs)
The predicted in-sample values of the models' endogenous variables.
"""
beta = self.beta
if self.det_coef_coint.size > 0:
beta = vstack((beta, self.det_coef_coint))
pi = np.dot(self.alpha, beta.T)
gamma = self.gamma
if self.det_coef.size > 0:
gamma = hstack((gamma, self.det_coef))
delta_y = np.dot(pi, self._y_lag1) + np.dot(gamma, self._delta_x)
return (delta_y + self._y_lag1[: self.neqs]).T
@cache_readonly
def resid(self):
"""
Return the difference between observed and fitted values.
Returns
-------
resid : array (nobs x neqs)
The residuals.
"""
return self.y_all.T[self.k_ar :] - self.fittedvalues
[docs]
def test_normality(self, signif=0.05):
r"""
Test assumption of normal-distributed errors using Jarque-Bera-style
omnibus :math:`\\chi^2` test.
Parameters
----------
signif : float
The test's significance level.
Returns
-------
result : :class:`statsmodels.tsa.vector_ar.hypothesis_test_results.NormalityTestResults`
Notes
-----
|H0| : data are generated by a Gaussian-distributed process
.. |H0| replace:: H\ :sub:`0`
"""
return test_normality(self, signif=signif)
[docs]
def test_whiteness(self, nlags=10, signif=0.05, adjusted=False):
"""
Test the whiteness of the residuals using the Portmanteau test.
This test is described in [1]_, chapter 8.4.1.
Parameters
----------
nlags : int > 0
signif : float, 0 < `signif` < 1
adjusted : bool, default False
Returns
-------
result : :class:`statsmodels.tsa.vector_ar.hypothesis_test_results.WhitenessTestResults`
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
statistic = 0
u = np.asarray(self.resid)
acov_list = _compute_acov(u, nlags)
# self.sigma_u instead of cov(0) is necessary to get the same
# result as JMulTi. The difference between the two is that sigma_u is
# calculated with the usual residuals while in cov(0) the
# residuals are demeaned. To me JMulTi's behaviour seems a bit strange
# because it uses the usual residuals here but demeaned residuals in
# the calculation of autocovariances with lag > 0. (used in the
# argument of trace() four rows below this comment.)
c0_inv = inv(self.sigma_u) # instead of inv(cov(0))
if c0_inv.dtype == np.complex128 and np.all(np.imag(c0_inv) == 0):
c0_inv = np.real(c0_inv)
for t in range(1, nlags + 1):
ct = acov_list[t]
to_add = np.trace(ct.T @ c0_inv @ ct @ c0_inv)
if adjusted:
to_add /= self.nobs - t
statistic += to_add
statistic *= self.nobs ** 2 if adjusted else self.nobs
df = (
self.neqs ** 2 * (nlags - self.k_ar + 1)
- self.neqs * self.coint_rank
)
dist = scipy.stats.chi2(df)
pvalue = dist.sf(statistic)
crit_value = dist.ppf(1 - signif)
return WhitenessTestResults(
statistic, crit_value, pvalue, df, signif, nlags, adjusted
)
[docs]
def plot_data(self, with_presample=False):
"""
Plot the input time series.
Parameters
----------
with_presample : bool, default: `False`
If `False`, the pre-sample data (the first `k_ar` values) will
not be plotted.
"""
y = self.y_all if with_presample else self.y_all[:, self.k_ar :]
names = self.names
dates = self.dates if with_presample else self.dates[self.k_ar :]
plot.plot_mts(y.T, names=names, index=dates)
[docs]
def summary(self, alpha=0.05):
"""
Return a summary of the estimation results.
Parameters
----------
alpha : float 0 < `alpha` < 1, default 0.05
Significance level of the shown confidence intervals.
Returns
-------
summary : :class:`statsmodels.iolib.summary.Summary`
A summary containing information about estimated parameters.
"""
from statsmodels.iolib.summary import summary_params
summary = Summary()
def make_table(
self,
params,
std_err,
t_values,
p_values,
conf_int,
mask,
names,
title,
strip_end=True,
):
res = (
self,
params[mask],
std_err[mask],
t_values[mask],
p_values[mask],
conf_int[mask],
)
param_names = [
".".join(name.split(".")[:-1]) if strip_end else name
for name in np.array(names)[mask].tolist()
]
return summary_params(
res,
yname=None,
xname=param_names,
alpha=alpha,
use_t=False,
title=title,
)
# ---------------------------------------------------------------------
# Add tables with gamma and det_coef for each endogenous variable:
lagged_params_components = []
stderr_lagged_params_components = []
tvalues_lagged_params_components = []
pvalues_lagged_params_components = []
conf_int_lagged_params_components = []
if self.det_coef.size > 0:
lagged_params_components.append(self.det_coef.flatten(order="F"))
stderr_lagged_params_components.append(
self.stderr_det_coef.flatten(order="F")
)
tvalues_lagged_params_components.append(
self.tvalues_det_coef.flatten(order="F")
)
pvalues_lagged_params_components.append(
self.pvalues_det_coef.flatten(order="F")
)
conf_int = self.conf_int_det_coef(alpha=alpha)
lower = conf_int["lower"].flatten(order="F")
upper = conf_int["upper"].flatten(order="F")
conf_int_lagged_params_components.append(
np.column_stack((lower, upper))
)
if self.k_ar - 1 > 0:
lagged_params_components.append(self.gamma.flatten())
stderr_lagged_params_components.append(self.stderr_gamma.flatten())
tvalues_lagged_params_components.append(
self.tvalues_gamma.flatten()
)
pvalues_lagged_params_components.append(
self.pvalues_gamma.flatten()
)
conf_int = self.conf_int_gamma(alpha=alpha)
lower = conf_int["lower"].flatten()
upper = conf_int["upper"].flatten()
conf_int_lagged_params_components.append(
np.column_stack((lower, upper))
)
# if gamma or det_coef exists, then make a summary-table for them:
if len(lagged_params_components) != 0:
lagged_params = hstack(lagged_params_components)
stderr_lagged_params = hstack(stderr_lagged_params_components)
tvalues_lagged_params = hstack(tvalues_lagged_params_components)
pvalues_lagged_params = hstack(pvalues_lagged_params_components)
conf_int_lagged_params = vstack(conf_int_lagged_params_components)
for i in range(self.neqs):
masks = []
offset = 0
# 1. Deterministic terms outside cointegration relation
if "co" in self.deterministic:
masks.append(offset + np.array(i, ndmin=1))
offset += self.neqs
if self.seasons > 0:
for _ in range(self.seasons - 1):
masks.append(offset + np.array(i, ndmin=1))
offset += self.neqs
if "lo" in self.deterministic:
masks.append(offset + np.array(i, ndmin=1))
offset += self.neqs
if self.exog is not None:
for _ in range(self.exog.shape[1]):
masks.append(offset + np.array(i, ndmin=1))
offset += self.neqs
# 2. Lagged endogenous terms
if self.k_ar - 1 > 0:
start = i * self.neqs * (self.k_ar - 1)
end = (i + 1) * self.neqs * (self.k_ar - 1)
masks.append(offset + np.arange(start, end))
# offset += self.neqs**2 * (self.k_ar-1)
# Create the table
mask = np.concatenate(masks)
eq_name = self.model.endog_names[i]
title = (
"Det. terms outside the coint. relation "
+ "& lagged endog. parameters for equation %s" % eq_name
)
table = make_table(
self,
lagged_params,
stderr_lagged_params,
tvalues_lagged_params,
pvalues_lagged_params,
conf_int_lagged_params,
mask,
self.model._lagged_param_names,
title,
)
summary.tables.append(table)
# ---------------------------------------------------------------------
# Loading coefficients (alpha):
a = self.alpha.flatten()
se_a = self.stderr_alpha.flatten()
t_a = self.tvalues_alpha.flatten()
p_a = self.pvalues_alpha.flatten()
ci_a = self.conf_int_alpha(alpha=alpha)
lower = ci_a["lower"].flatten()
upper = ci_a["upper"].flatten()
ci_a = np.column_stack((lower, upper))
a_names = self.model._load_coef_param_names
alpha_masks = []
for i in range(self.neqs):
if self.coint_rank > 0:
start = i * self.coint_rank
end = start + self.coint_rank
mask = np.arange(start, end)
# Create the table
alpha_masks.append(mask)
eq_name = self.model.endog_names[i]
title = "Loading coefficients (alpha) for equation %s" % eq_name
table = make_table(
self, a, se_a, t_a, p_a, ci_a, mask, a_names, title
)
summary.tables.append(table)
# ---------------------------------------------------------------------
# Cointegration matrix/vector (beta) and det. terms inside coint. rel.:
coint_components = []
stderr_coint_components = []
tvalues_coint_components = []
pvalues_coint_components = []
conf_int_coint_components = []
if self.coint_rank > 0:
coint_components.append(self.beta.T.flatten())
stderr_coint_components.append(self.stderr_beta.T.flatten())
tvalues_coint_components.append(self.tvalues_beta.T.flatten())
pvalues_coint_components.append(self.pvalues_beta.T.flatten())
conf_int = self.conf_int_beta(alpha=alpha)
lower = conf_int["lower"].T.flatten()
upper = conf_int["upper"].T.flatten()
conf_int_coint_components.append(np.column_stack((lower, upper)))
if self.det_coef_coint.size > 0:
coint_components.append(self.det_coef_coint.flatten())
stderr_coint_components.append(
self.stderr_det_coef_coint.flatten()
)
tvalues_coint_components.append(
self.tvalues_det_coef_coint.flatten()
)
pvalues_coint_components.append(
self.pvalues_det_coef_coint.flatten()
)
conf_int = self.conf_int_det_coef_coint(alpha=alpha)
lower = conf_int["lower"].flatten()
upper = conf_int["upper"].flatten()
conf_int_coint_components.append(np.column_stack((lower, upper)))
coint = hstack(coint_components)
stderr_coint = hstack(stderr_coint_components)
tvalues_coint = hstack(tvalues_coint_components)
pvalues_coint = hstack(pvalues_coint_components)
conf_int_coint = vstack(conf_int_coint_components)
coint_names = self.model._coint_param_names
for i in range(self.coint_rank):
masks = []
offset = 0
# 1. Cointegration matrix (beta)
if self.coint_rank > 0:
start = i * self.neqs
end = start + self.neqs
masks.append(offset + np.arange(start, end))
offset += self.neqs * self.coint_rank
# 2. Deterministic terms inside cointegration relation
if "ci" in self.deterministic:
masks.append(offset + np.array(i, ndmin=1))
offset += self.coint_rank
if "li" in self.deterministic:
masks.append(offset + np.array(i, ndmin=1))
offset += self.coint_rank
if self.exog_coint is not None:
for _ in range(self.exog_coint.shape[1]):
masks.append(offset + np.array(i, ndmin=1))
offset += self.coint_rank
# Create the table
mask = np.concatenate(masks)
title = (
"Cointegration relations for "
+ "loading-coefficients-column %d" % (i + 1)
)
table = make_table(
self,
coint,
stderr_coint,
tvalues_coint,
pvalues_coint,
conf_int_coint,
mask,
coint_names,
title,
)
summary.tables.append(table)
return summary
Last update:
Jan 20, 2025