Discrete Choice Models Overview

[1]:
import numpy as np
import statsmodels.api as sm

Data

Load data from Spector and Mazzeo (1980). Examples follow Greene’s Econometric Analysis Ch. 21 (5th Edition).

[2]:
spector_data = sm.datasets.spector.load()
spector_data.exog = sm.add_constant(spector_data.exog, prepend=False)

Inspect the data:

[3]:
print(spector_data.exog.head())
print(spector_data.endog.head())
    GPA  TUCE  PSI  const
0  2.66  20.0  0.0    1.0
1  2.89  22.0  0.0    1.0
2  3.28  24.0  0.0    1.0
3  2.92  12.0  0.0    1.0
4  4.00  21.0  0.0    1.0
0    0.0
1    0.0
2    0.0
3    0.0
4    1.0
Name: GRADE, dtype: float64

Linear Probability Model (OLS)

[4]:
lpm_mod = sm.OLS(spector_data.endog, spector_data.exog)
lpm_res = lpm_mod.fit()
print("Parameters: ", lpm_res.params[:-1])
Parameters:  GPA     0.463852
TUCE    0.010495
PSI     0.378555
dtype: float64

Logit Model

[5]:
logit_mod = sm.Logit(spector_data.endog, spector_data.exog)
logit_res = logit_mod.fit(disp=0)
print("Parameters: ", logit_res.params)
Parameters:  GPA       2.826113
TUCE      0.095158
PSI       2.378688
const   -13.021347
dtype: float64

Marginal Effects

[6]:
margeff = logit_res.get_margeff()
print(margeff.summary())
        Logit Marginal Effects
=====================================
Dep. Variable:                  GRADE
Method:                          dydx
At:                           overall
==============================================================================
                dy/dx    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
GPA            0.3626      0.109      3.313      0.001       0.148       0.577
TUCE           0.0122      0.018      0.686      0.493      -0.023       0.047
PSI            0.3052      0.092      3.304      0.001       0.124       0.486
==============================================================================

As in all the discrete data models presented below, we can print a nice summary of results:

[7]:
print(logit_res.summary())
                           Logit Regression Results
==============================================================================
Dep. Variable:                  GRADE   No. Observations:                   32
Model:                          Logit   Df Residuals:                       28
Method:                           MLE   Df Model:                            3
Date:                Tue, 07 Jan 2025   Pseudo R-squ.:                  0.3740
Time:                        18:56:08   Log-Likelihood:                -12.890
converged:                       True   LL-Null:                       -20.592
Covariance Type:            nonrobust   LLR p-value:                  0.001502
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
GPA            2.8261      1.263      2.238      0.025       0.351       5.301
TUCE           0.0952      0.142      0.672      0.501      -0.182       0.373
PSI            2.3787      1.065      2.234      0.025       0.292       4.465
const        -13.0213      4.931     -2.641      0.008     -22.687      -3.356
==============================================================================

Probit Model

[8]:
probit_mod = sm.Probit(spector_data.endog, spector_data.exog)
probit_res = probit_mod.fit()
probit_margeff = probit_res.get_margeff()
print("Parameters: ", probit_res.params)
print("Marginal effects: ")
print(probit_margeff.summary())
Optimization terminated successfully.
         Current function value: 0.400588
         Iterations 6
Parameters:  GPA      1.625810
TUCE     0.051729
PSI      1.426332
const   -7.452320
dtype: float64
Marginal effects:
       Probit Marginal Effects
=====================================
Dep. Variable:                  GRADE
Method:                          dydx
At:                           overall
==============================================================================
                dy/dx    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
GPA            0.3608      0.113      3.182      0.001       0.139       0.583
TUCE           0.0115      0.018      0.624      0.533      -0.025       0.048
PSI            0.3165      0.090      3.508      0.000       0.140       0.493
==============================================================================

Multinomial Logit

Load data from the American National Election Studies:

[9]:
anes_data = sm.datasets.anes96.load()
anes_exog = anes_data.exog
anes_exog = sm.add_constant(anes_exog)

Inspect the data:

[10]:
print(anes_data.exog.head())
print(anes_data.endog.head())
   logpopul  selfLR   age  educ  income
0 -2.302585     7.0  36.0   3.0     1.0
1  5.247550     3.0  20.0   4.0     1.0
2  3.437208     2.0  24.0   6.0     1.0
3  4.420045     3.0  28.0   6.0     1.0
4  6.461624     5.0  68.0   6.0     1.0
0    6.0
1    1.0
2    1.0
3    1.0
4    0.0
Name: PID, dtype: float64

Fit MNL model:

[11]:
mlogit_mod = sm.MNLogit(anes_data.endog, anes_exog)
mlogit_res = mlogit_mod.fit()
print(mlogit_res.params)
Optimization terminated successfully.
         Current function value: 1.548647
         Iterations 7
                 0         1         2         3         4          5
const    -0.373402 -2.250913 -3.665584 -7.613843 -7.060478 -12.105751
logpopul -0.011536 -0.088751 -0.105967 -0.091557 -0.093285  -0.140881
selfLR    0.297714  0.391669  0.573451  1.278772  1.346962   2.070080
age      -0.024945 -0.022898 -0.014851 -0.008681 -0.017904  -0.009433
educ      0.082491  0.181043 -0.007152  0.199828  0.216939   0.321926
income    0.005197  0.047874  0.057575  0.084498  0.080958   0.108894

Poisson

Load the Rand data. Note that this example is similar to Cameron and Trivedi’s Microeconometrics Table 20.5, but it is slightly different because of minor changes in the data.

[12]:
rand_data = sm.datasets.randhie.load()
rand_exog = rand_data.exog
rand_exog = sm.add_constant(rand_exog, prepend=False)

Fit Poisson model:

[13]:
poisson_mod = sm.Poisson(rand_data.endog, rand_exog)
poisson_res = poisson_mod.fit(method="newton")
print(poisson_res.summary())
Optimization terminated successfully.
         Current function value: 3.091609
         Iterations 6
                          Poisson Regression Results
==============================================================================
Dep. Variable:                  mdvis   No. Observations:                20190
Model:                        Poisson   Df Residuals:                    20180
Method:                           MLE   Df Model:                            9
Date:                Tue, 07 Jan 2025   Pseudo R-squ.:                 0.06343
Time:                        18:56:09   Log-Likelihood:                -62420.
converged:                       True   LL-Null:                       -66647.
Covariance Type:            nonrobust   LLR p-value:                     0.000
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
lncoins       -0.0525      0.003    -18.216      0.000      -0.058      -0.047
idp           -0.2471      0.011    -23.272      0.000      -0.268      -0.226
lpi            0.0353      0.002     19.302      0.000       0.032       0.039
fmde          -0.0346      0.002    -21.439      0.000      -0.038      -0.031
physlm         0.2717      0.012     22.200      0.000       0.248       0.296
disea          0.0339      0.001     60.098      0.000       0.033       0.035
hlthg         -0.0126      0.009     -1.366      0.172      -0.031       0.005
hlthf          0.0541      0.015      3.531      0.000       0.024       0.084
hlthp          0.2061      0.026      7.843      0.000       0.155       0.258
const          0.7004      0.011     62.741      0.000       0.678       0.722
==============================================================================

Negative Binomial

The negative binomial model gives slightly different results.

[14]:
mod_nbin = sm.NegativeBinomial(rand_data.endog, rand_exog)
res_nbin = mod_nbin.fit(disp=False)
print(res_nbin.summary())
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/statsmodels/base/model.py:612: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals
  warnings.warn("Maximum Likelihood optimization failed to "
                     NegativeBinomial Regression Results
==============================================================================
Dep. Variable:                  mdvis   No. Observations:                20190
Model:               NegativeBinomial   Df Residuals:                    20180
Method:                           MLE   Df Model:                            9
Date:                Tue, 07 Jan 2025   Pseudo R-squ.:                 0.01845
Time:                        18:56:11   Log-Likelihood:                -43384.
converged:                      False   LL-Null:                       -44199.
Covariance Type:            nonrobust   LLR p-value:                     0.000
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
lncoins       -0.0579      0.006     -9.515      0.000      -0.070      -0.046
idp           -0.2678      0.023    -11.802      0.000      -0.312      -0.223
lpi            0.0412      0.004      9.938      0.000       0.033       0.049
fmde          -0.0381      0.003    -11.216      0.000      -0.045      -0.031
physlm         0.2691      0.030      8.985      0.000       0.210       0.328
disea          0.0382      0.001     26.080      0.000       0.035       0.041
hlthg         -0.0441      0.020     -2.201      0.028      -0.083      -0.005
hlthf          0.0173      0.036      0.478      0.632      -0.054       0.088
hlthp          0.1782      0.074      2.399      0.016       0.033       0.324
const          0.6635      0.025     26.786      0.000       0.615       0.712
alpha          1.2930      0.019     69.477      0.000       1.256       1.329
==============================================================================

Alternative solvers

The default method for fitting discrete data MLE models is Newton-Raphson. You can use other solvers by using the method argument:

[15]:
mlogit_res = mlogit_mod.fit(method="bfgs", maxiter=250)
print(mlogit_res.summary())
Optimization terminated successfully.
         Current function value: 1.548647
         Iterations: 111
         Function evaluations: 117
         Gradient evaluations: 117
                          MNLogit Regression Results
==============================================================================
Dep. Variable:                    PID   No. Observations:                  944
Model:                        MNLogit   Df Residuals:                      908
Method:                           MLE   Df Model:                           30
Date:                Tue, 07 Jan 2025   Pseudo R-squ.:                  0.1648
Time:                        18:56:12   Log-Likelihood:                -1461.9
converged:                       True   LL-Null:                       -1750.3
Covariance Type:            nonrobust   LLR p-value:                1.822e-102
==============================================================================
     PID=1       coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const         -0.3734      0.630     -0.593      0.553      -1.608       0.861
logpopul      -0.0115      0.034     -0.337      0.736      -0.079       0.056
selfLR         0.2977      0.094      3.180      0.001       0.114       0.481
age           -0.0249      0.007     -3.823      0.000      -0.038      -0.012
educ           0.0825      0.074      1.121      0.262      -0.062       0.227
income         0.0052      0.018      0.295      0.768      -0.029       0.040
------------------------------------------------------------------------------
     PID=2       coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const         -2.2509      0.763     -2.949      0.003      -3.747      -0.755
logpopul      -0.0888      0.039     -2.266      0.023      -0.166      -0.012
selfLR         0.3917      0.108      3.619      0.000       0.180       0.604
age           -0.0229      0.008     -2.893      0.004      -0.038      -0.007
educ           0.1810      0.085      2.123      0.034       0.014       0.348
income         0.0479      0.022      2.149      0.032       0.004       0.092
------------------------------------------------------------------------------
     PID=3       coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const         -3.6656      1.157     -3.169      0.002      -5.932      -1.399
logpopul      -0.1060      0.057     -1.858      0.063      -0.218       0.006
selfLR         0.5734      0.159      3.617      0.000       0.263       0.884
age           -0.0149      0.011     -1.311      0.190      -0.037       0.007
educ          -0.0072      0.126     -0.057      0.955      -0.255       0.240
income         0.0576      0.034      1.713      0.087      -0.008       0.123
------------------------------------------------------------------------------
     PID=4       coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const         -7.6139      0.958     -7.951      0.000      -9.491      -5.737
logpopul      -0.0916      0.044     -2.091      0.037      -0.177      -0.006
selfLR         1.2788      0.129      9.921      0.000       1.026       1.531
age           -0.0087      0.008     -1.031      0.302      -0.025       0.008
educ           0.1998      0.094      2.123      0.034       0.015       0.384
income         0.0845      0.026      3.226      0.001       0.033       0.136
------------------------------------------------------------------------------
     PID=5       coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const         -7.0605      0.844     -8.362      0.000      -8.715      -5.406
logpopul      -0.0933      0.039     -2.371      0.018      -0.170      -0.016
selfLR         1.3470      0.117     11.494      0.000       1.117       1.577
age           -0.0179      0.008     -2.352      0.019      -0.033      -0.003
educ           0.2169      0.085      2.552      0.011       0.050       0.384
income         0.0810      0.023      3.524      0.000       0.036       0.126
------------------------------------------------------------------------------
     PID=6       coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const        -12.1058      1.060    -11.421      0.000     -14.183     -10.028
logpopul      -0.1409      0.042     -3.343      0.001      -0.223      -0.058
selfLR         2.0701      0.143     14.435      0.000       1.789       2.351
age           -0.0094      0.008     -1.160      0.246      -0.025       0.007
educ           0.3219      0.091      3.534      0.000       0.143       0.500
income         0.1089      0.025      4.304      0.000       0.059       0.158
==============================================================================

Last update: Jan 07, 2025