statsmodels.tsa.stattools.pacf¶
-
statsmodels.tsa.stattools.pacf(x, nlags=
None
, method='ywadjusted'
, alpha=None
)[source]¶ Partial autocorrelation estimate.
- Parameters:¶
- xarray_like
Observations of time series for which pacf is calculated.
- nlags
int
,optional
Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs // 2 - 1). The returned value includes lag 0 (ie., 1) so size of the pacf vector is (nlags + 1,).
- method
str
,default
“ywunbiased” Specifies which method for the calculations to use.
“yw” or “ywadjusted” : Yule-Walker with sample-size adjustment in denominator for acovf. Default.
“ywm” or “ywmle” : Yule-Walker without adjustment.
“ols” : regression of time series on lags of it and on constant.
“ols-inefficient” : regression of time series on lags using a single common sample to estimate all pacf coefficients.
“ols-adjusted” : regression of time series on lags with a bias adjustment.
“ld” or “ldadjusted” : Levinson-Durbin recursion with bias correction.
“ldb” or “ldbiased” : Levinson-Durbin recursion without bias correction.
“burg” : Burg”s partial autocorrelation estimator.
- alpha
float
,optional
If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)).
- Returns:¶
See also
statsmodels.tsa.stattools.acf
Estimate the autocorrelation function.
statsmodels.tsa.stattools.pacf
Partial autocorrelation estimation.
statsmodels.tsa.stattools.pacf_yw
Partial autocorrelation estimation using Yule-Walker.
statsmodels.tsa.stattools.pacf_ols
Partial autocorrelation estimation using OLS.
statsmodels.tsa.stattools.pacf_burg
Partial autocorrelation estimation using Burg’s method.
statsmodels.graphics.tsaplots.plot_pacf
Plot partial autocorrelations and confidence intervals.
Notes
Based on simulation evidence across a range of low-order ARMA models, the best methods based on root MSE are Yule-Walker (MLW), Levinson-Durbin (MLE) and Burg, respectively. The estimators with the lowest bias included included these three in addition to OLS and OLS-adjusted.
Yule-Walker (adjusted) and Levinson-Durbin (adjusted) performed consistently worse than the other options.