Optimization¶
statsmodels uses three types of algorithms for the estimation of the parameters of a model.
Basic linear models such as WLS and OLS are directly estimated using appropriate linear algebra.
RLM and GLM, use iteratively re-weighted least squares. However, you can optionally select one of the scipy optimizers discussed below.
For all other models, we use optimizers from scipy.
Where practical, certain models allow for the optional selection of a scipy optimizer. A particular scipy optimizer might be default or an option. Depending on the model and the data, choosing an appropriate scipy optimizer enables avoidance of a local minima, fitting models in less time, or fitting a model with less memory.
statsmodels supports the following optimizers along with keyword arguments associated with that specific optimizer:
newton
- Newton-Raphson iteration. While not directly from scipy, we consider it an optimizer because only the score and hessian are required.- tolfloat
Relative error in params acceptable for convergence.
nm
- scipy’sfmin_nm
- xtolfloat
Relative error in params acceptable for convergence
- ftolfloat
Relative error in loglike(params) acceptable for convergence
- maxfunint
Maximum number of function evaluations to make.
bfgs
- Broyden–Fletcher–Goldfarb–Shanno optimization, scipy’sfmin_bfgs
.- gtolfloat
Stop when norm of gradient is less than gtol.
- normfloat
Order of norm (np.inf is max, -np.inf is min)
- epsilon
If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None.
lbfgs
- A more memory-efficient (limited memory) implementation ofbfgs
. Scipy’sfmin_l_bfgs_b
.- mint
The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.)
- pgtolfloat
The iteration will stop when
max{|proj g_i | i = 1, ..., n} <= pgtol
where pg_i is the i-th component of the projected gradient.- factrfloat
The iteration stops when
(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps
, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B.- maxfunint
Maximum number of iterations.
- epsilonfloat
Step size used when approx_grad is True, for numerically calculating the gradient
- approx_gradbool
Whether to approximate the gradient numerically (in which case func returns only the function value).
cg
- Conjugate gradient optimization. Scipy’sfmin_cg
.- gtolfloat
Stop when norm of gradient is less than gtol.
- normfloat
Order of norm (np.inf is max, -np.inf is min)
- epsilonfloat
If fprime is approximated, use this value for the step size. Can be scalar or vector. Only relevant if Likelihoodmodel.score is None.
ncg
- Newton conjugate gradient. Scipy’sfmin_ncg
.- fhess_pcallable f’(x, *args)
Function which computes the Hessian of f times an arbitrary vector, p. Should only be supplied if LikelihoodModel.hessian is None.
- avextolfloat
Stop when the average relative error in the minimizer falls below this amount.
- epsilonfloat or ndarray
If fhess is approximated, use this value for the step size. Only relevant if Likelihoodmodel.hessian is None.
powell
- Powell’s method. Scipy’sfmin_powell
.- xtolfloat
Line-search error tolerance
- ftolfloat
Relative error in loglike(params) for acceptable for convergence.
- maxfunint
Maximum number of function evaluations to make.
- start_direcndarray
Initial direction set.
basinhopping
- Basin hopping. This is part of scipy’sbasinhopping
tools.- niterinteger
The number of basin hopping iterations.
- niter_successinteger
Stop the run if the global minimum candidate remains the same for this number of iterations.
- Tfloat
The “temperature” parameter for the accept or reject criterion. Higher “temperatures” mean that larger jumps in function value will be accepted. For best results T should be comparable to the separation (in function value) between local minima.
- stepsizefloat
Initial step size for use in the random displacement.
- intervalinteger
The interval for how often to update the stepsize.
- minimizerdict
Extra keyword arguments to be passed to the minimizer scipy.optimize.minimize(), for example ‘method’ - the minimization method (e.g. ‘L-BFGS-B’), or ‘tol’ - the tolerance for termination. Other arguments are mapped from explicit argument of fit: - args <- fargs - jac <- score - hess <- hess
minimize
- Allows the use of any scipy optimizer.- min_methodstr, optional
Name of minimization method to use. Any method specific arguments can be passed directly. For a list of methods and their arguments, see documentation of scipy.optimize.minimize. If no method is specified, then BFGS is used.
Model Class¶
Generally, there is no need for an end-user to directly call these functions and classes. However, we provide the class because the different optimization techniques have unique keyword arguments that may be useful to the user.
|
Fit using Newton-Raphson algorithm. |
|
Fit using Broyden-Fletcher-Goldfarb-Shannon algorithm. |
|
Fit using Limited-memory Broyden-Fletcher-Goldfarb-Shannon algorithm. |
|
Fit using Nelder-Mead algorithm. |
|
Fit using Conjugate Gradient algorithm. |
|
Fit using Newton Conjugate Gradient algorithm. |
|
Fit using Powell's conjugate direction algorithm. |
|
Fit using Basin-hopping algorithm. |