statsmodels.discrete.discrete_model.MNLogit.hessian¶
- MNLogit.hessian(params)[source]¶
Multinomial logit Hessian matrix of the log-likelihood
- Parameters:¶
- paramsarray_like
The parameters of the model
- Returns:¶
- hess
ndarray
, (J*K, J*K) The Hessian, second derivative of loglikelihood function with respect to the flattened parameters, evaluated at params
- hess
Notes
where
equals 1 if j = l and 0 otherwise.The actual Hessian matrix has J**2 * K x K elements. Our Hessian is reshaped to be square (J*K, J*K) so that the solvers can use it.
This implementation does not take advantage of the symmetry of the Hessian and could probably be refactored for speed.
Last update:
Oct 03, 2024