statsmodels.discrete.discrete_model.Probit.score_factor¶
- Probit.score_factor(params)[source]¶
Probit model Jacobian for each observation
- Parameters:¶
- paramsarray_like
The parameters of the model
- Returns:¶
- score_factorarray_like (nobs,)
The derivative of the loglikelihood function for each observation with respect to linear predictor evaluated at params
Notes
\[\frac{\partial\ln L_{i}}{\partial\beta}=\left[\frac{q_{i}\phi\left(q_{i}x_{i}^{\prime}\beta\right)}{\Phi\left(q_{i}x_{i}^{\prime}\beta\right)}\right]x_{i}\]for observations \(i=1,...,n\)
Where \(q=2y-1\). This simplification comes from the fact that the normal distribution is symmetric.
Last update:
Oct 03, 2024