statsmodels.graphics.tsaplots.plot_accf_grid¶
-
statsmodels.graphics.tsaplots.plot_accf_grid(x, *, varnames=
None
, fig=None
, lags=None
, negative_lags=True
, alpha=0.05
, use_vlines=True
, adjusted=False
, fft=False
, missing='none'
, zero=True
, auto_ylims=False
, bartlett_confint=False
, vlines_kwargs=None
, **kwargs)[source]¶ Plot auto/cross-correlation grid
Plots lags on the horizontal axis and the correlations on the vertical axis of each graph.
- Parameters:¶
- xarray_like
2D array of time-series values: rows are observations, columns are variables.
- varnames: sequence of str, optional
Variable names to use in plot titles. If
x
is a pandas dataframe andvarnames
is provided, it overrides the column names of the dataframe. Ifvarnames
is not provided andx
is not a dataframe, variable namesx[0]
,x[1]
, etc. are generated.- fig
Matplotlib
figure
instance
,optional
If given, this figure is used to plot in, otherwise a new figure is created.
- lags{
int
, array_like},optional
An int or array of lag values, used on horizontal axes. Uses
np.arange(lags)
when lags is an int. If not provided,lags=np.arange(len(corr))
is used.- negative_lags: bool, optional
If True, negative lags are shown on the horizontal axes of plots below the main diagonal.
- alphascalar,
optional
If a number is given, the confidence intervals for the given level are plotted, e.g. if alpha=.05, 95 % confidence intervals are shown. If None, confidence intervals are not shown on the plot.
- use_vlinesbool,
optional
If True, shows vertical lines and markers for the correlation values. If False, only shows markers. The default marker is ‘o’; it can be overridden with a
marker
kwarg.- adjustedbool
If True, then denominators for correlations are n-k, otherwise n.
- fftbool,
optional
If True, computes the ACF via FFT.
- missing
str
,optional
A string in [‘none’, ‘raise’, ‘conservative’, ‘drop’] specifying how NaNs are to be treated.
- zerobool,
optional
Flag indicating whether to include the 0-lag autocorrelations (which are always equal to 1). Default is True.
- auto_ylimsbool,
optional
If True, adjusts automatically the vertical axis limits to correlation values.
- bartlett_confintbool,
default
False
If True, use Bartlett’s formula to calculate confidence intervals in auto-correlation plots. See the description of
plot_acf
for details. This argument does not affect cross-correlation plots.- vlines_kwargs
dict
,optional
Optional dictionary of keyword arguments that are passed to vlines.
- **kwargs
kwargs
,optional
Optional keyword arguments that are directly passed on to the Matplotlib
plot
andaxhline
functions.
- Returns:¶
Figure
If fig is None, the created figure. Otherwise, fig is returned. Plots on the grid show the cross-correlation of the row variable with the lags of the column variable.
See also
statsmodels.graphics.tsaplots
Examples
>>> import pandas as pd >>> import matplotlib.pyplot as plt >>> import statsmodels.api as sm
>>> dta = sm.datasets.macrodata.load_pandas().data >>> diffed = dta.diff().dropna() >>> sm.graphics.tsa.plot_accf_grid(diffed[["unemp", "infl"]]) >>> plt.show()