statsmodels.tsa.ardl.UECMResults.append¶
-
UECMResults.append(endog, exog=
None
, refit=False
, fit_kwargs=None
)¶ Append observations to the ones used to fit the model
Creates a new result object using the current fitted parameters where additional observations are appended to the data used to fit the model. The new results can then be used for analysis or forecasting.
- Parameters:¶
- endogarray_like
New observations from the modeled time-series process.
- exogarray_like,
optional
New observations of exogenous regressors, if applicable.
- refitbool,
optional
Whether to re-fit the parameters, using the new dataset. Default is False (so parameters from the current results object are used to create the new results object).
- fit_kwargs
dict
,optional
Keyword arguments to pass to fit (if refit=True).
- Returns:¶
AutoRegResults
Updated results object containing results for the new dataset.
See also
AutoRegResults.apply
statsmodels.tsa.statespace.mlemodel.MLEResults.append
Notes
The endog and exog arguments to this method must be formatted in the same way (e.g. Pandas Series versus Numpy array) as were the endog and exog arrays passed to the original model.
The endog argument to this method should consist of new observations that occurred directly after the last element of endog. For any other kind of dataset, see the apply method.
Examples
>>> import pandas as pd >>> from statsmodels.tsa.ar_model import AutoReg >>> index = pd.period_range(start='2000', periods=3, freq='Y') >>> original_observations = pd.Series([1.2, 1.4, 1.8], index=index) >>> mod = AutoReg(original_observations, lags=1, trend="n") >>> res = mod.fit() >>> print(res.params) y.L1 1.235294 dtype: float64 >>> print(res.fittedvalues) 2001 1.482353 2002 1.729412 Freq: A-DEC, dtype: float64 >>> print(res.forecast(1)) 2003 2.223529 Freq: A-DEC, dtype: float64
>>> new_index = pd.period_range(start='2003', periods=3, freq='Y') >>> new_observations = pd.Series([2.1, 2.4, 2.7], index=new_index) >>> updated_res = res.append(new_observations) >>> print(updated_res.params) y.L1 1.235294 dtype: float64 >>> print(updated_res.fittedvalues) dtype: float64 2001 1.482353 2002 1.729412 2003 2.223529 2004 2.594118 2005 2.964706 Freq: A-DEC, dtype: float64 >>> print(updated_res.forecast(1)) 2006 3.335294 Freq: A-DEC, dtype: float64