statsmodels.tsa.ardl.UECMResults.apply¶
-
UECMResults.apply(endog, exog=
None
, refit=False
, fit_kwargs=None
)¶ Apply the fitted parameters to new data unrelated to the original data
Creates a new result object using the current fitted parameters, applied to a completely new dataset that is assumed to be unrelated to the model’s original data. The new results can then be used for analysis or forecasting.
- Parameters:¶
- endogarray_like
New observations from the modeled time-series process.
- exogarray_like,
optional
New observations of exogenous regressors, if applicable.
- refitbool,
optional
Whether to re-fit the parameters, using the new dataset. Default is False (so parameters from the current results object are used to create the new results object).
- fit_kwargs
dict
,optional
Keyword arguments to pass to fit (if refit=True).
- Returns:¶
AutoRegResults
Updated results object containing results for the new dataset.
See also
AutoRegResults.append
statsmodels.tsa.statespace.mlemodel.MLEResults.apply
Notes
The endog argument to this method should consist of new observations that are not necessarily related to the original model’s endog dataset.
Care is needed when using deterministic processes with cyclical components such as seasonal dummies or Fourier series. These deterministic components will align to the first observation in the data and so it is essential that any new data have the same initial period.
Examples
>>> import pandas as pd >>> from statsmodels.tsa.ar_model import AutoReg >>> index = pd.period_range(start='2000', periods=3, freq='Y') >>> original_observations = pd.Series([1.2, 1.5, 1.8], index=index) >>> mod = AutoReg(original_observations, lags=1, trend="n") >>> res = mod.fit() >>> print(res.params) y.L1 1.219512 dtype: float64 >>> print(res.fittedvalues) 2001 1.463415 2002 1.829268 Freq: A-DEC, dtype: float64 >>> print(res.forecast(1)) 2003 2.195122 Freq: A-DEC, dtype: float64
>>> new_index = pd.period_range(start='1980', periods=3, freq='Y') >>> new_observations = pd.Series([1.4, 0.3, 1.2], index=new_index) >>> new_res = res.apply(new_observations) >>> print(new_res.params) y.L1 1.219512 dtype: float64 >>> print(new_res.fittedvalues) 1981 1.707317 1982 0.365854 Freq: A-DEC, dtype: float64 >>> print(new_res.forecast(1)) 1983 1.463415 Freq: A-DEC, dtype: float64