Release 0.12.0¶
Release summary¶
statsmodels is using github to store the updated documentation. Two version are available:
Stable, the latest release
Development, the latest build of the main branch
Warning
API stability is not guaranteed for new features, although even in this case changes will be made in a backwards compatible way if possible. The stability of a new feature depends on how much time it was already in statsmodels main and how much usage it has already seen. If there are specific known problems or limitations, then they are mentioned in the docstrings.
Stats¶
Issues Closed: 239
Pull Requests Merged: 221
The Highlights¶
Statistics¶
New functions for hypothesis tests return a HolderTuple instance which
allows tuple indexing and unpacking for (statistic, pvalue)
, but also has
attribute access for those and for additional results statistics.
Meta-Analysis¶
Functions for Meta-Analysis have been added in meta_analysis
.
The function combine_effects
performs
fixed effects and random effects analysis. Several methods such as Paule-Mandel
and DerSimonian-Laird are available to estimate the random effects variance.
The module also includes effect size functions for standardized mean difference
and for proportions that can be used with combine_effects
.
A notebook illustrates the usage of the new features for meta-analysis.
New hypothesis test for 2 samples¶
Hypothesis tests, confidence intervals and power functions have been added for proportions from two independent samples. Inferential statistics are available for difference, ratio and odds-ratio of the two proportions. Equivalence testing for two independent proportions is available based on two one-sided tests TOST.
Hypothesis tests including equivalence test, for the ratio of two
independent Poisson rates are now available in
test_poisson_2indep
and
tost_poisson_2indep
Oneway ANOVA-type analysis¶
Several statistical methods for ANOVA-type analysis of k independent samples
have been added in module oneway
. This includes
standard Anova, Anova for unequal variances (Welch, Brown-Forsythe for mean),
Anova based on trimmed samples (Yuen anova) and equivalence testing using
the method of Wellek.
Anova for equality of variances or dispersion are available for several
transformations. This includes Levene test and Browne-Forsythe test for equal
variances as special cases. It uses the anova_oneway function, so unequal
variance and trimming options are also available for tests on variances.
Several functions for effect size measures have been added, that can be used
for reporting or for power and sample size computation.
Multivariate statistics¶
The new module multivariate
includes one and
two sample tests for multivariate means, Hotelling’s t-tests’,
test_mvmean
,
test_mvmean_2indep
and confidence
intervals for one-sample multivariate mean
confint_mvmean
Additionally, hypothesis tests for covariance patterns, and for oneway equality
of covariances are now available in several test_cov
functions.
Time-Series Analysis¶
New exponential smoothing model: ETS (Error, Trend, Seasonal)¶
Class implementing ETS models
ETSModel
.Includes linear and non-linear exponential smoothing models
Supports parameter fitting, in-sample prediction and out-of-sample forecasting, prediction intervals, simulation, and more.
Based on the innovations state space approach.
Statespace Models¶
New dynamic factor model for large datasets and monthly / quarterly mixed frequency models¶
New dynamic factor model
DynamicFactorMQ
.Allows for hundreds of observed variables, by fitting with the EM algorithm
Allows specifying factors that load only on a specific group of variables
Allows for monthly / quarterly mixed frequency models. For example, this supports one popular approach to “Nowcasting” GDP
Decomposition of forecast updates based on the “news”¶
New
news
method for state space model results objectsLinks updated data to changes in forecasts
Supports “nowcasting” exercises that progressively incorporate more and more information as time goes on
Sparse Cholesky Simulation Smoother¶
New option for simulation smoothing in state space models via the “Cholesky factor algorithm” (CFA) approach in
CFASimulationSmoother
Takes advantage of algorithms for sparse Cholesky factorization, rather than using the typical simulation smoother based on Kalman filtering and smoothing
Option to use Chadrasekhar recursions¶
New option for state space models to use Chandrasekhar recursions rather than than the typical Kalman filtering recursions by setting
filter_chandrasekhar=True
.Improved performance for some models with large state vectors
Forecasting Methods¶
Two popular method for forecasting time series, forecasting after STL decomposition
(STLForecast
)
and the Theta model (ThetaModel
) have
been added.
Complex Deterministic Terms¶
DeterministicProcess
can be used to generate
deterministic processes containing time trends, seasonal dummies and Fourier components.
A DeterministicProcess
can be used to produce
in-sample regressors or out-of-sample values suitable for forecasting.
What’s new - an overview¶
The following lists the main new features of statsmodels 0.12.0. In addition, release 0.12.0 includes bug fixes, refactorings and improvements in many areas.
Submodules¶
Documentation
¶
Fix the version that appears in the documentation (PR #6452)
Send log to dev/null/ (PR #6456)
Correct spelling of various (PR #6518)
Fix typos (PR #6531)
Update interactions_anova.ipynb (PR #6601)
Fix true type on statespace docs page (PR #6616)
Minor fixes for holtwinters simulate (PR #6631)
Change OLS example to use datasets (PR #6656)
Fix AutoReg docstring (PR #6662)
Fix fdrcorrection docstring missing is_sorted parameter (PR #6680)
Add new badges (PR #6704)
Fix number if notebook text (PR #6709)
Improve Factor and related docstrings (PR #6719)
Improve explantion of missing values in ACF and related (PR #6726)
Notebook for quasibinomial regression (PR #6732)
Improve “conservative” doc (PR #6738)
Update broken link (PR #6742)
Fix broken links with 404 error (PR #6746)
Demonstrate variance components analysis (PR #6758)
Make deprecations more visible (PR #6775)
Numpydoc signatures (PR #6825)
Correct reference in docs (PR #6837)
Include dot_plot (PR #6841)
Updated durbin_watson Docstring and Tests (PR #6848)
Explain low df in cluster (PR #6853)
Fix common doc errors (PR #6862)
Small doc fixes (PR #6874)
Fix issues in docs related to exponential smoothing (PR #6879)
Spelling and other doc fixes (PR #6902)
Correct spacing around colon in docstrings (PR #6903)
Initial 0.12 Release Note (PR #6923)
Fix doc errors and silence warning (PR #6931)
Clarify deprecations (PR #6932)
Document exceptions and warnings (PR #6943)
Update pandas function in hp_filter example (PR #6946)
Prepare docs (PR #6948)
Fix final issues in release note (PR #6951)
Final doc fixed for 0.12.0rc0 (PR #6965)
Update DeterministicProcess docs (PR #6968)
Add docstring to string_like method (PR #6972)
Fix LaTeX in seasonal notebook (PR #6976)
Add new stats to release notes for 0.12 (PR #7001)
Performance
¶
backport
¶
MLEResults.states.predicted has wrong index (PR #6580)
State space: simulate with time-varying covariance matrices. (PR #6607)
State space: error with collapsed observations when missing (PR #6613)
Dataframe/series concatenation in statespace results append (PR #6768)
Pass cov_type, cov_kwargs through ARIMA.fit (PR #6770)
base
¶
build
¶
discrete
¶
docs
¶
duration
¶
Allow more than 2 groups for survdiff in statsmodels.duration (PR #6626)
gam
¶
genmod
¶
Change default optimizer for glm/ridge and make it user-settable (PR #6438)
Fix exposure/offset handling in GEEResults (PR #6475)
Use GLM starting values for QIF (PR #6514)
Don’t attach patsy constraint instance (PR #6521)
Allow GEE weights to vary within clusters (PR #6582)
Calculate AR covariance parameters for gridded data (PR #6621)
Warn for non-convergence in elastic net (PR #6697)
Gh 6627 (PR #6852)
Change of BIC formula in GLM (PR #6941)
Make glm’s predict function return numpy array even if exposure is a pandas series (PR #6942)
Fix check for offset_exposure in null (PR #6957)
Add test for offset exposure null (PR #6959)
graphics
¶
io
¶
maintenance
¶
Special docbuild (PR #6457)
Special docbuild” (PR #6460)
Correcting typo (PR #6461)
Avoid noise in f-pvalue (PR #6465)
Replace Python 3.5 with 3.8 on Azure (PR #6466)
Update supported versions (PR #6467)
Fix future warnings (PR #6469)
Fix issue with ragged array (PR #6471)
Avoid future error (PR #6473)
Silence expected visible deprecation warning (PR #6477)
Remove Python 3.5 references (PR #6492)
Avoid calling depr code (PR #6493)
Use travis cache and optimize build times (PR #6495)
Relax tolerance on test that occasionally fails (PR #6534)
Relax tolerance on test that randomly fails (PR #6588)
Fix appveyor/conda (PR #6653)
Delete empty directory (PR #6671)
Flake8 fixes (PR #6710)
Remove deprecated keyword (PR #6712)
Remove OrderedDict (PR #6715)
Remove dtype np.integer for avoid Dep Warning (PR #6728)
Update pip-pre links (PR #6733)
Spelling and small fixes (PR #6752)
Remove error on FutureWarning (PR #6811)
Fix failing tests (PR #6817)
Replace Warnings with Notes in regression summary (PR #6828)
Numpydoc should work now (PR #6842)
Deprecate categorical (PR #6843)
Remove redundant definition (PR #6845)
Relax tolerance on test that fails Win32 (PR #6849)
Fix error on nightly build (PR #6850)
Correct debugging info (PR #6855)
Mark VAR from_formula as NotImplemented (PR #6865)
Allow skip if rdataset fails (PR #6871)
Improve lint (PR #6885)
Change default lag in serial correlation tests (PR #6893)
Ensure setuptools is imported first (PR #6894)
Remove FutureWarnings (PR #6920)
Add tool to simplify documenting API in release notes (PR #6922)
Relax test tolerance for future compat (PR #6945)
Fixes for failures in wheel building (PR #6952)
Fixes for wheel building (PR #6954)
Remove print statements (PR #6985)
Update Azure images (PR #6992)
multivariate
¶
nonparametric
¶
Fix #6511 (PR #6515)
Fix domain check (PR #6547)
Ensure sigma estimate is positive in KDE (PR #6713)
Fix access to normal_reference_constant (PR #6806)
Add xvals param to lowess smoother (PR #6908)
Return self from KDEUnivariate fit (PR #6991)
Allow custom bandwidth functions in KDEUnivariate fit (PR #7002)
regression
¶
Statsmodels.regression.linear_model.OLS.fit_regularized fails to generate correct answer (#6604) (PR #6608)
Change OLS example to use datasets (PR #6656)
Speed up HC2/HC3 standard error calculation, using less memory (PR #6664)
Fix summary col R2 ordering (PR #6714)
Insufficient input checks in QuantReg (PR #6747)
Add expanding initialization to RollingOLS/WLS (PR #6838)
Add a note when R2 is uncentered (PR #6844)
robust
¶
stats
¶
Multivariate mean tests and confint (PR #4107)
Fix tukey-hsd for 1 pvalue (PR #6470)
Add option for original Breusch-Pagan heteroscedasticity test (PR #6508)
ENH Allow optional regularization in local fdr (PR #6622)
Add meta-analysis (basic methods) (PR #6632)
Add two independent proportion inference rebased (PR #6675)
Rates, poisson means two-sample comparison rebased (PR #6677)
Stats.base, add HolderTuple, Holder class with indexing (PR #6678)
Add covariance structure hypothesis tests (PR #6693)
Raise exception when recursive residual is not well defined (PR #6727)
Mediation support for PH regression (PR #6782)
Stats robust rebased2 (PR #6789)
Hotelling’s Two Sample Mean Test (PR #6810)
Stats moment_helpers use random state in unit test (PR #6835)
Updated durbin_watson Docstring and Tests (PR #6848)
Add recent stats addition to docs (PR #6859)
REF/DOC docs and refactor of recent stats (PR #6872)
Api cleanup and improve docstrings in stats, round 3 (PR #6897)
Improve descriptivestats (PR #6944)
Catch warning (PR #6964)
tools
¶
tsa
¶
Fixes #6553, sliced predicted values according to predicted index (PR #6556)
Holt-Winters simulations (PR #6560)
Example notebook (r): stationarity and detrending (ADF/KPSS) (PR #6614)
Ensure text comparison is lower (PR #6628)
Minor fixes for holtwinters simulate (PR #6631)
New exponential smoothing implementation (PR #6699)
Improve warning message in KPSS (PR #6711)
Change trend initialization in STL (PR #6722)
Add check in test_whiteness (PR #6723)
Raise on incorrectly sized exog (PR #6730)
Add deterministic processes (PR #6751)
Add Theta forecasting method (PR #6767)
Automatic lag selection for Box-Pierce, Ljung-Box #6645 (PR #6785)
Fix missing str (PR #6827)
Add support for PeriodIndex to AutoReg (PR #6829)
Error in append for ARIMA model with trend (PR #6832)
Add QR-based matrix rank (PR #6834)
Rename unbiased to adjusted (PR #6839)
Ensure PACF lag length is sensible (PR #6846)
Allow Series as exog in predict (PR #6847)
Raise on nonstationary parameters when attempting to use GLS (PR #6854)
Relax test tolerance (PR #6856)
Limit maxlags in VAR (PR #6867)
Fix indexing with HoltWinters’s forecast (PR #6869)
Refactor Holt-Winters (PR #6870)
Fix raise exception on granger causality test (PR #6877)
Get_prediction method for ETS (PR #6882)
Ets: test for simple exponential smoothing convergence (PR #6884)
Added diagnostics test to ETS model (PR #6892)
Stop transforming ES components (PR #6904)
Fix extend in VARMAX with trend (PR #6909)
Add STL Forecasting method (PR #6911)
Dynamic is incorrect when not an int in statespace get_prediction (PR #6917)
Correct IRF nobs with exog (PR #6925)
Add get_prediction to AutoReg (PR #6927)
Standardize forecast API (PR #6933)
Fix small issues post ETS get_prediction merge (PR #6934)
Modify failing test on Windows (PR #6949)
Improve ETS / statespace documentation and highlights for v0.12 (PR #6950)
Remove FutureWarnings (PR #6958)
tsa.statespace
¶
State space: add Chandrasekhar recursions (PR #6411)
Use reset_randomstate (PR #6433)
State space: add “Cholesky factor algorithm” simulation smoothing (PR #6501)
Bayesian estimation of SARIMAX using PyMC3 NUTS (PR #6528)
State space: compute smoothed state autocovariance matrices for arbitrary lags (PR #6579)
MLEResults.states.predicted has wrong index (PR #6580)
State space: simulate with time-varying covariance matrices. (PR #6607)
State space: error with collapsed observations when missing (PR #6613)
Notebook describing how to create state space custom models (PR #6682)
Fix covariance estimation in parameterless models (PR #6688)
Fix state space linting errors. (PR #6698)
Decomposition of forecast updates in state space models due to the “news” (PR #6765)
Dataframe/series concatenation in statespace results append (PR #6768)
Pass cov_type, cov_kwargs through ARIMA.fit (PR #6770)
Improve univariate smoother performance (PR #6797)
Add news example notebook image. (PR #6800)
Fix extend in VARMAX with trend (PR #6909)
Dynamic is incorrect when not an int in statespace get_prediction (PR #6917)
Add dynamic factor model with EM algorithm, option for monthly/quarterly mixed frequency model (PR #6937)
Improve ETS / statespace documentation and highlights for v0.12 (PR #6950)
SARIMAX throwing different errors when length of endogenous var is too low (PR #6961)
Fix start params computation with few nobs (PR #6962)
Relax tolerance on random failure (PR #6963)
tsa.vector.ar
¶
bug-wrong¶
A new issue label type-bug-wrong indicates bugs that cause that incorrect numbers are returned without warnings. (Regular bugs are mostly usability bugs or bugs that raise an exception for unsupported use cases.) see tagged issues
Major Bugs Fixed¶
See github issues for a list of bug fixes included in this release
Development summary and credits¶
Besides receiving contributions for new and improved features and for bugfixes, important contributions to general maintenance for this release came from
Chad Fulton
Brock Mendel
Peter Quackenbush
Kerby Shedden
Kevin Sheppard
and the general maintainer and code reviewer
Josef Perktold
Additionally, many users contributed by participation in github issues and providing feedback.
Thanks to all of the contributors for the 0.12.0 release (based on git log):
Alex Lyttle
Amund Vedal
Baran Karakus
Batakrishna Sahu
Chad Fulton
Cinthia M. Tanaka
Dorian Bivolaru
Ezequiel Smucler
Giulio Beseghi
Haoyu Qi
Hassan Kibirige
He Yang
Henning Blunck
Jimmy2027
Joon Ro
Joonsuk Park
Josef Perktold
Kerby Shedden
Kevin Rose
Kevin Sheppard
Manmeet Kumar Chaudhuri
Markus Löning
Martin Larralde
Nolan Conaway
Paulo Galuzio
Peter Prescott
Peter Quackenbush
Samuel Scherrer
Sean Lane
Sebastian Pölsterl
Skipper Seabold
Thomas Brooks
Thomas Marchand
Tim Gates
Victor Ananyev
Wouter De Coster
Zhiqing Xiao
adrienpacifico
aeturrell
cd
das-soham
eirki
pag
partev
tagoma
w31ha0
These lists of names are automatically generated based on git log, and may not be complete.
Merged Pull Requests¶
The following Pull Requests were merged since the last release:
PR #4107: ENH: multivariate mean tests and confint
PR #6411: ENH: state space: add Chandrasekhar recursions
PR #6433: TST/BUG: use reset_randomstate
PR #6438: BUG: Change default optimizer for glm/ridge and make it user-settable
PR #6452: DOC: Fix the version that appears in the documentation
PR #6456: DOC: Send log to dev/null/
PR #6457: DOC: Special docbuild
PR #6460: Revert “DOC: Special docbuild”
PR #6461: MAINT: correcting typo
PR #6465: MAINT: Avoid noise in f-pvalue
PR #6466: MAINT: Replace Python 3.5 with 3.8 on Azure
PR #6467: MAINT: Update supported versions
PR #6469: MAINT: Fix future warnings
PR #6470: BUG: fix tukey-hsd for 1 pvalue
PR #6471: MAINT: Fix issue with ragged array
PR #6473: MAINT: Avoid future error
PR #6474: BLD: Use pip on Azure
PR #6475: BUG: Fix exposure/offset handling in GEEResults
PR #6477: BUG: Silence expected visible deprecation warning
PR #6490: BLD: Attempt to cache key docbuild files
PR #6491: BLD: Improve doc caching
PR #6492: MAINT: Remove Python 3.5 references
PR #6493: MAINT: Avoid calling depr code
PR #6495: MAINT: Use travis cache and optimize build times
PR #6501: ENH: state space: add “Cholesky factor algorithm” simulation smoothing
PR #6508: ENH: Add option for original Breusch-Pagan heteroscedasticity test
PR #6514: ENH: use GLM starting values for QIF
PR #6515: BUG: fix #6511
PR #6518: DOC: Fix simple typo: various
PR #6520: BUG: fix GAM for 1-dim exog_linear
PR #6521: REF/BUG: don’t attach patsy constraint instance
PR #6528: DOC: Bayesian estimation of SARIMAX using PyMC3 NUTS
PR #6531: DOC: fix typos
PR #6534: MAINT: Relax tolerance on test that occasionally fails
PR #6547: BUG: Fix domain check
PR #6556: BUG: fixes #6553, sliced predicted values according to predicted index
PR #6560: ENH: Holt-Winters simulations
PR #6579: ENH: state space: compute smoothed state autocovariance matrices for arbitrary lags
PR #6580: BUG: MLEResults.states.predicted has wrong index
PR #6582: ENH: Allow GEE weights to vary within clusters
PR #6587: BLD: Azure: Mac OSX 10.13 -> 10.14
PR #6588: MAINT: Relax tolerance on test that randomly fails
PR #6590: ENH: Include figsize as parameter for IRF plot
PR #6601: DOC: Update interactions_anova.ipynb
PR #6607: BUG: state space: simulate with time-varying covariance matrices.
PR #6608: BUG: statsmodels.regression.linear_model.OLS.fit_regularized fails to generate correct answer (#6604)
PR #6613: BUG: state space: error with collapsed observations when missing
PR #6614: DOC/ENH: example notebook (r): stationarity and detrending (ADF/KPSS)
PR #6616: DOC: Fix true type on statespace docs page
PR #6621: ENH: Calculate AR covariance parameters for gridded data
PR #6622: ENH Allow optional regularization in local fdr
PR #6626: ENH: allow more than 2 groups for survdiff in statsmodels.duration
PR #6628: BUG: Ensure text comparison is lower
PR #6631: DOC/TST: minor fixes for holtwinters simulate
PR #6632: ENH: add meta-analysis (basic methods)
PR #6653: MAINT: Fix appveyor/conda
PR #6654: ENH: Handle pathlib.Path objects
PR #6656: DOC: change OLS example to use datasets
PR #6657: BUG: fix constraints and bunds when use scipy.optimize.minimize
PR #6662: DOC: Fix AutoReg docstring
PR #6664: PERF: Speed up HC2/HC3 standard error calculation, using less memory
PR #6671: MAINT: Delete empty directory
PR #6675: ENH: add two independent proportion inference rebased
PR #6677: ENH: rates, poisson means two-sample comparison rebased
PR #6678: ENH: stats.base, add HolderTuple, Holder class with indexing
PR #6680: DOC: Fix fdrcorrection docstring missing is_sorted parameter
PR #6682: ENH/DOC: Notebook describing how to create state space custom models
PR #6688: BUG: Fix covariance estimation in parameterless models
PR #6693: ENH: add covariance structure hypothesis tests
PR #6697: ENH: Warn for non-convergence in elastic net
PR #6698: CLN: Fix state space linting errors.
PR #6699: ENH: New exponential smoothing implementation
PR #6704: DOC: Add new badges
PR #6705: BUGENH: Improve missing value handling in PCA
PR #6709: DOC: Fix number if notebook text
PR #6710: MAINT: Flake8 fixes
PR #6711: ENH: Improve warning message in KPSS
PR #6712: MAINT: Remove deprecated keyword
PR #6713: BUG: Ensure sigma estimate is positive in KDE
PR #6714: BUG: Fix summary col R2 ordering
PR #6715: MAINT: Remove OrderedDict
PR #6719: DOC: Improve Factor and related docstrings
PR #6722: BUG: Change trend initialization in STL
PR #6723: ENH: Add check in test_whiteness
PR #6726: DOC: Improve explantion of missing values in ACF and related
PR #6727: ENH: Raise exception when recursive residual is not well defined
PR #6728: MAINT: Remove dtype np.integer for avoid Dep Warning
PR #6730: BUG: Raise on incorrectly sized exog
PR #6732: DOC: Notebook for quasibinomial regression
PR #6733: MAINT: Update pip-pre links
PR #6738: DOC: Improve “conservative” doc
PR #6742: Update broken link
PR #6744: ENH: Speed up banddepth calculations
PR #6746: DOC: Fix broken links with 404 error
PR #6747: BUG: Insufficient input checks in QuantReg
PR #6751: ENH: Add deterministic processes
PR #6752: MAINT: Spelling and small fixes
PR #6758: DOC: Demonstrate variance components analysis
PR #6765: ENH: Decomposition of forecast updates in state space models due to the “news”
PR #6766: PERF: Sparse matrices in MixedLM
PR #6767: ENH: Add Theta forecasting method
PR #6768: BUG: dataframe/series concatenation in statespace results append
PR #6770: BUG: pass cov_type, cov_kwargs through ARIMA.fit
PR #6775: DOC: Make deprecations more visible
PR #6782: ENH: Mediation support for PH regression
PR #6785: ENH: automatic lag selection for Box-Pierce, Ljung-Box #6645
PR #6789: ENH: Stats robust rebased2
PR #6797: ENH: improve univariate smoother performance
PR #6800: DOC: Add news example notebook image.
PR #6806: BUG: Fix access to normal_reference_constant
PR #6810: ENH: Hotelling’s Two Sample Mean Test
PR #6811: MAINT: Remove error on FutureWarning
PR #6817: MAINT: Fix failing tests
PR #6818: BUG: Fix logic in labeling corr plot
PR #6825: DOC: Numpydoc signatures
PR #6827: BUG: Fix missing str
PR #6828: MAINT: Replace Warnings with Notes in regression summary
PR #6829: ENH: Add support for PeriodIndex to AutoReg
PR #6830: ENH: Return column information in add_constant
PR #6831: BUG: Correct shape of fvalue and f_pvalue
PR #6832: BUG: error in append for ARIMA model with trend
PR #6834: ENH: Add QR-based matrix rank
PR #6835: TST: stats moment_helpers use random state in unit test
PR #6836: MAINT: Catch warnings in discrete
PR #6837: DOC: Correct reference in docs
PR #6838: ENH: Add expanding initialization to RollingOLS/WLS
PR #6839: REF: Rename unbiased to adjusted
PR #6841: DOC: Include dot_plot
PR #6842: MAINT: numpydoc should work now
PR #6843: MAINT: Deprecate categorical
PR #6844: ENH: Add a note when R2 is uncentered
PR #6845: MAINT: Remove redundant definition
PR #6846: BUG: Ensure PACF lag length is sensible
PR #6847: BUG: Allow Series as exog in predict
PR #6848: Updated durbin_watson Docstring and Tests
PR #6849: TST: Relax tolerance on test that fails Win32
PR #6850: MAINT: Fix error on nightly build
PR #6852: Gh 6627
PR #6853: DOC: Explain low df in cluster
PR #6854: BUG: Raise on nonstationary parameters when attempting to use GLS
PR #6855: MAINT: Correct debugging info
PR #6856: MAINT: Relax test tolerance
PR #6859: DOC: add recent stats addition to docs
PR #6862: DOC: Fix common doc errors
PR #6865: MAINT: Mark VAR from_formula as NotImplemented
PR #6867: BUG: Limit maxlags in VAR
PR #6868: TST: Refactor factor tests again
PR #6869: BUG: Fix indexing with HoltWinters’s forecast
PR #6870: REF: Refactor Holt-Winters
PR #6871: MAINT: Allow skip if rdataset fails
PR #6872: REF/DOC docs and refactor of recent stats
PR #6874: DOC: Small doc fixes
PR #6877: BUG: fix raise exception on granger causality test
PR #6879: DOC: Fix issues in docs related to exponential smoothing
PR #6882: ENH: get_prediction method for ETS
PR #6884: TST: ets: test for simple exponential smoothing convergence
PR #6885: MAINT: Improve lint
PR #6888: BUG: Correct dimension when data removed
PR #6892: ENH: added diagnostics test to ETS model
PR #6893: MAINT: Change default lag in serial correlation tests
PR #6894: MAINT: Ensure setuptools is imported first
PR #6895: ENH: Added label option to summary.to_latex()
PR #6897: REF/DOC: api cleanup and improve docstrings in stats, round 3
PR #6900: ENH: Fixed the shifted column names in summary.to_latex()
PR #6902: DOC: Spelling and other doc fixes
PR #6903: DOC: Correct spacing around colon in docstrings
PR #6904: BUG: Stop transforming ES components
PR #6905: ENH: removed additional hline between tabulars
PR #6906: ENH: Enable qqplot_2sample to handle uneven samples
PR #6908: ENH: Add xvals param to lowess smoother
PR #6909: BUG: fix extend in VARMAX with trend
PR #6910: ENH: Support frozen dist in ProbPlots
PR #6911: ENH: Add STL Forecasting method
PR #6915: BUG: Fixed BSplines to match existing docs
PR #6917: BUG: dynamic is incorrect when not an int in statespace get_prediction
PR #6920: MAINT: Remove FutureWarnings
PR #6922: ENH: Add tool to simplify documenting API in release notes
PR #6923: DOC: Initial 0.12 Release Note
PR #6925: BUG: Correct IRF nobs with exog
PR #6926: ENH: Add Root Mean Square Percentage Error
PR #6927: ENH: Add get_prediction to AutoReg
PR #6931: DOC/MAINT: Fix doc errors and silence warning
PR #6932: DOC: Clarify deprecations
PR #6933: MAINT: Standardize forecast API
PR #6934: MAINT: Fix small issues post ETS get_prediction merge
PR #6937: ENH: Add dynamic factor model with EM algorithm, option for monthly/quarterly mixed frequency model
PR #6938: ENH: Add improved .cdf() and .ppf() to discrete distributions
PR #6939: BUG: remove k_extra from effects_idx
PR #6940: TST: Improve count model tests
PR #6941: REF: Change of BIC formula in GLM
PR #6942: BUG: Make glm’s predict function return numpy array even if exposure is a pandas series
PR #6943: DOC: Document exceptions and warnings
PR #6944: ENH: improve descriptivestats
PR #6945: MAINT: Relax test tolerance for future compat
PR #6946: DOC: update pandas function in hp_filter example
PR #6948: Prepare docs
PR #6949: TST: Modify failing test on Windows
PR #6950: DOC: improve ETS / statespace documentation and highlights for v0.12
PR #6951: DOC: Fix final issues in release note
PR #6952: MAINT: Fixes for failures in wheel building
PR #6954: MAINT: Fixes for wheel building
PR #6957: BUG: Fix check for offset_exposure in null
PR #6958: MAINT: Remove FutureWarnings
PR #6959: TST: Add test for offset exposure null
PR #6961: BUG: SARIMAX throwing different errors when length of endogenous var is too low
PR #6962: BUG: Fix start params computation with few nobs
PR #6963: TST: Relax tolerance on random failure
PR #6964: MAINT: Catch warning
PR #6965: DOC: Final doc fixed for 0.12.0rc0
PR #6968: DOC: Update DeterministicProcess docs
PR #6969: ENH add normalized iqr to robust.scales
PR #6972: DOC: Add docstring to string_like method
PR #6973: ENH/BUG: robust.scale.iqr does need centering, since quantiles are translation equivariant
PR #6976: DOC: Fix LaTeX in seasonal notebook
PR #6985: MAINT: Remove print statements
PR #6990: ENH: Add robust qn scale
PR #6991: ENH: Return self from KDEUnivariate fit
PR #6992: MAINT: Update Azure images
PR #7000: BUG: fix bug where mad ignores center if center is not callable
PR #7001: DOC: add new stats to release notes for 0.12
PR #7002: ENH: Allow custom bandwidth functions in KDEUnivariate fit
API Changes¶
Notable New Classes¶
Moved or Removed Classes¶
statsmodels.base._penalties.L2ContraintsPenalty
statsmodels.tools.docstring.ParseError
statsmodels.tsa.holtwinters.ExponentialSmoothing
statsmodels.tsa.holtwinters.Holt
statsmodels.tsa.holtwinters.HoltWintersResults
statsmodels.tsa.holtwinters.HoltWintersResultsWrapper
statsmodels.tsa.holtwinters.SimpleExpSmoothing
statsmodels.tsa.stattools.ResultsStore
New Methods¶
statsmodels.tsa.base.prediction.PredictionResults.predicted_mean
statsmodels.tsa.base.prediction.PredictionResults.row_labels
statsmodels.tsa.base.prediction.PredictionResults.var_pred_mean
statsmodels.tsa.statespace.kalman_smoother.SmootherResults.news
statsmodels.tsa.statespace.kalman_smoother.SmootherResults.smoothed_state_autocovariance
statsmodels.tsa.statespace.kalman_smoother.SmootherResults.smoothed_state_gain
statsmodels.tsa.statespace.representation.Representation.diff_endog
Removed Methods¶
statsmodels.base.model.GEEResults.remove_data
statsmodels.base.model.NominalGEEResults.remove_data
statsmodels.base.model.OrdinalGEEResults.remove_data
statsmodels.base.model.VAR.from_formula
statsmodels.genmod._prediction.PredictionResults.se_obs
statsmodels.genmod._prediction.PredictionResults.t_test
statsmodels.genmod._prediction.PredictionResults.tvalues
statsmodels.genmod.generalized_estimating_equations.GEE.predict
statsmodels.genmod.generalized_estimating_equations.NominalGEE.predict
statsmodels.genmod.generalized_estimating_equations.OrdinalGEE.predict
statsmodels.tsa.statespace.mlemodel.ARIMAResults.append
Methods with New Arguments¶
statsmodels.discrete.discrete_model.BinaryModel
:check_rank
statsmodels.discrete.discrete_model.CountModel
:check_rank
statsmodels.discrete.discrete_model.DiscreteModel
:check_rank
statsmodels.discrete.discrete_model.GeneralizedPoisson
:check_rank
statsmodels.discrete.discrete_model.Logit
:check_rank
statsmodels.discrete.discrete_model.MNLogit
:check_rank
statsmodels.discrete.discrete_model.MultinomialModel
:check_rank
statsmodels.discrete.discrete_model.NegativeBinomial
:check_rank
statsmodels.discrete.discrete_model.NegativeBinomialP
:check_rank
statsmodels.discrete.discrete_model.Poisson
:check_rank
statsmodels.discrete.discrete_model.Probit
:check_rank
statsmodels.duration.hazard_regression.PHReg
:pred_only
statsmodels.regression.mixed_linear_model.MixedLMResults
:fit_kwargs
statsmodels.regression.recursive_ls.RecursiveLSResults
:copy_initialization
statsmodels.regression.rolling.RollingOLS
:expanding
statsmodels.regression.rolling.RollingWLS
:expanding
statsmodels.stats.mediation.Mediation
:outcome_predict_kwargs
statsmodels.tsa.ar_model.AutoReg
:deterministic
,old_names
statsmodels.tsa.arima.model.ARIMAResults
:copy_initialization
statsmodels.tsa.statespace.dynamic_factor.DynamicFactorResults
:copy_initialization
statsmodels.tsa.statespace.exponential_smoothing.ExponentialSmoothingResults
:copy_initialization
statsmodels.tsa.statespace.kalman_smoother.KalmanSmoother
:update_smoother
,update_filter
,update_representation
statsmodels.tsa.statespace.mlemodel.MLEResults
:copy_initialization
statsmodels.tsa.statespace.sarimax.SARIMAXResults
:copy_initialization
statsmodels.tsa.statespace.simulation_smoother.SimulationSmoother
:update_smoother
,update_filter
,update_representation
statsmodels.tsa.statespace.structural.UnobservedComponentsResults
:copy_initialization
statsmodels.tsa.statespace.varmax.VARMAXResults
:truncate_endog_names
Methods with Changed Arguments¶
statsmodels.regression.mixed_linear_model.MixedLM
New:
MixedLM(start_params, reml, niter_sa, do_cg, fe_pen, cov_pen, free, full_output, method, fit_kwargs)
Old:
MixedLM(start_params, reml, niter_sa, do_cg, fe_pen, cov_pen, free, full_output, method, kwargs)
New Functions¶
statsmodels.stats.contrast.wald_test_noncent
statsmodels.stats.contrast.wald_test_noncent_generic
statsmodels.stats.proportion.samplesize_proportions_2indep_onetail
Removed Functions¶
statsmodels.compat.python.iteritems
statsmodels.compat.python.iterkeys
statsmodels.compat.python.itervalues
statsmodels.stats.diagnostic.unitroot_adf
statsmodels.tools.decorators.nottest
statsmodels.tsa.stattools.periodogram
Functions with New Arguments¶
statsmodels.graphics.gofplots.qqline
:lineoptions
statsmodels.tsa.ar_model.ar_select_order
:old_names
Functions with Changed Arguments¶
statsmodels.graphics.tsaplots.plot_acf
New:
plot_acf(x, ax, lags, alpha, use_vlines, adjusted, fft, missing, title, zero, vlines_kwargs, kwargs)
Old:
plot_acf(x, ax, lags, alpha, use_vlines, unbiased, fft, missing, title, zero, vlines_kwargs, kwargs)
statsmodels.tsa.stattools.acf
New:
acf(x, adjusted, nlags, qstat, fft, alpha, missing)
Old:
acf(x, unbiased, nlags, qstat, fft, alpha, missing)
statsmodels.tsa.stattools.acovf
New:
acovf(x, adjusted, demean, fft, missing, nlag)
Old:
acovf(x, unbiased, demean, fft, missing, nlag)
statsmodels.tsa.stattools.ccf
New:
ccf(x, y, adjusted)
Old:
ccf(x, y, unbiased)
statsmodels.tsa.stattools.ccovf
New:
ccovf(x, y, adjusted, demean)
Old:
ccovf(x, y, unbiased, demean)
statsmodels.tsa.stattools.pacf_ols
New:
pacf_ols(x, nlags, efficient, adjusted)
Old:
pacf_ols(x, nlags, efficient, unbiased)