Source code for statsmodels.robust.norms

import numpy as np

from . import _tables


def _cabs(x):
    """absolute value function that changes complex sign based on real sign

    This could be useful for complex step derivatives of functions that
    need abs. Not yet used.
    """
    sign = (x.real >= 0) * 2 - 1
    return sign * x


[docs] class RobustNorm: """ The parent class for the norms used for robust regression. Lays out the methods expected of the robust norms to be used by statsmodels.RLM. See Also -------- statsmodels.rlm Notes ----- Currently only M-estimators are available. References ---------- PJ Huber. 'Robust Statistics' John Wiley and Sons, Inc., New York, 1981. DC Montgomery, EA Peck. 'Introduction to Linear Regression Analysis', John Wiley and Sons, Inc., New York, 2001. R Venables, B Ripley. 'Modern Applied Statistics in S' Springer, New York, 2002. """ continuous = 1 def __repr__(self): return self.__class__.__name__
[docs] def rho(self, z): """ The robust criterion estimator function. Abstract method: -2 loglike used in M-estimator """ raise NotImplementedError
[docs] def psi(self, z): """ Derivative of rho. Sometimes referred to as the influence function. Abstract method: psi = rho' """ raise NotImplementedError
[docs] def weights(self, z): """ Returns the value of psi(z) / z Abstract method: psi(z) / z """ raise NotImplementedError
[docs] def psi_deriv(self, z): """ Derivative of psi. Used to obtain robust covariance matrix. See statsmodels.rlm for more information. Abstract method: psi_derive = psi' """ raise NotImplementedError
def __call__(self, z): """ Returns the value of estimator rho applied to an input """ return self.rho(z)
[docs] class LeastSquares(RobustNorm): """ Least squares rho for M-estimation and its derived functions. See Also -------- statsmodels.robust.norms.RobustNorm """ continuous = 2 redescending = "not"
[docs] def max_rho(self): return np.inf
[docs] def rho(self, z): """ The least squares estimator rho function Parameters ---------- z : ndarray 1d array Returns ------- rho : ndarray rho(z) = (1/2.)*z**2 """ return z**2 * 0.5
[docs] def psi(self, z): """ The psi function for the least squares estimator The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z """ return np.asarray(z)
[docs] def weights(self, z): """ The least squares estimator weighting function for the IRLS algorithm. The psi function scaled by the input z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray weights(z) = np.ones(z.shape) """ z = np.asarray(z) return np.ones(z.shape, np.float64)
[docs] def psi_deriv(self, z): """ The derivative of the least squares psi function. Returns ------- psi_deriv : ndarray ones(z.shape) Notes ----- Used to estimate the robust covariance matrix. """ z = np.asarray(z) return np.ones(z.shape, np.float64)
[docs] class HuberT(RobustNorm): """ Huber's T for M estimation. Parameters ---------- t : float, optional The tuning constant for Huber's t function. The default value is 1.345. See Also -------- statsmodels.robust.norms.RobustNorm """ continuous = 1 redescending = "not" def __init__(self, t=1.345): self.t = t def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ if inplace: self.t = c return self else: return self.__class__(t=c)
[docs] def max_rho(self): return np.inf
def _subset(self, z): """ Huber's T is defined piecewise over the range for z """ z = np.asarray(z) return np.less_equal(np.abs(z), self.t)
[docs] def rho(self, z): r""" The robust criterion function for Huber's t. Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray rho(z) = .5*z**2 for \|z\| <= t rho(z) = \|z\|*t - .5*t**2 for \|z\| > t """ z = np.asarray(z) test = self._subset(z) return (test * 0.5 * z**2 + (1 - test) * (np.abs(z) * self.t - 0.5 * self.t**2))
[docs] def psi(self, z): r""" The psi function for Huber's t estimator The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z for \|z\| <= t psi(z) = sign(z)*t for \|z\| > t """ z = np.asarray(z) test = self._subset(z) return test * z + (1 - test) * self.t * np.sign(z)
[docs] def weights(self, z): r""" Huber's t weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray weights(z) = 1 for \|z\| <= t weights(z) = t/\|z\| for \|z\| > t """ z_isscalar = np.isscalar(z) z = np.atleast_1d(z) test = self._subset(z) absz = np.abs(z) absz[test] = 1.0 v = test + (1 - test) * self.t / absz if z_isscalar: v = v[0] return v
[docs] def psi_deriv(self, z): """ The derivative of Huber's t psi function Notes ----- Used to estimate the robust covariance matrix. """ return np.less_equal(np.abs(z), self.t).astype(float)
# TODO: untested, but looks right. RamsayE not available in R or SAS?
[docs] class RamsayE(RobustNorm): """ Ramsay's Ea for M estimation. Parameters ---------- a : float, optional The tuning constant for Ramsay's Ea function. The default value is 0.3. See Also -------- statsmodels.robust.norms.RobustNorm """ continuous = 2 redescending = "soft" def __init__(self, a=.3): self.a = a def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ # todo : change default to inplace=False, when tools are fixed if inplace: self.a = c return self else: return self.__class__(a=c)
[docs] def max_rho(self): return np.inf
[docs] def rho(self, z): r""" The robust criterion function for Ramsay's Ea. Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray rho(z) = a**-2 * (1 - exp(-a*\|z\|)*(1 + a*\|z\|)) """ z = np.asarray(z) return (1 - np.exp(-self.a * np.abs(z)) * (1 + self.a * np.abs(z))) / self.a**2
[docs] def psi(self, z): r""" The psi function for Ramsay's Ea estimator The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z*exp(-a*\|z\|) """ z = np.asarray(z) return z * np.exp(-self.a * np.abs(z))
[docs] def weights(self, z): r""" Ramsay's Ea weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray weights(z) = exp(-a*\|z\|) """ z = np.asarray(z) return np.exp(-self.a * np.abs(z))
[docs] def psi_deriv(self, z): """ The derivative of Ramsay's Ea psi function. Notes ----- Used to estimate the robust covariance matrix. """ a = self.a x = np.exp(-a * np.abs(z)) dx = -a * x * np.sign(z) y = z dy = 1 return x * dy + y * dx
[docs] class AndrewWave(RobustNorm): """ Andrew's wave for M estimation. Parameters ---------- a : float, optional The tuning constant for Andrew's Wave function. The default value is 1.339. See Also -------- statsmodels.robust.norms.RobustNorm """ continuous = 1 redescending = "hard" def __init__(self, a=1.339): self.a = a def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ if inplace: self.a = c return self else: return self.__class__(a=c)
[docs] def max_rho(self): return 2 * self.a**2
def _subset(self, z): """ Andrew's wave is defined piecewise over the range of z. """ z = np.asarray(z) return np.less_equal(np.abs(z), self.a * np.pi)
[docs] def rho(self, z): r""" The robust criterion function for Andrew's wave. Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray The elements of rho are defined as: .. math:: rho(z) & = a^2 *(1-cos(z/a)), |z| \leq a\pi \\ rho(z) & = 2a^2, |z|>a\pi """ a = self.a z = np.asarray(z) test = self._subset(z) return (test * a**2 * (1 - np.cos(z / a)) + (1 - test) * a**2 * 2)
[docs] def psi(self, z): r""" The psi function for Andrew's wave The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = a * sin(z/a) for \|z\| <= a*pi psi(z) = 0 for \|z\| > a*pi """ a = self.a z = np.asarray(z) test = self._subset(z) return test * a * np.sin(z / a)
[docs] def weights(self, z): r""" Andrew's wave weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray weights(z) = sin(z/a) / (z/a) for \|z\| <= a*pi weights(z) = 0 for \|z\| > a*pi """ a = self.a z = np.asarray(z) test = self._subset(z) ratio = z / a small = np.abs(ratio) < np.finfo(np.double).eps if np.any(small): weights = np.ones_like(ratio) large = ~small ratio = ratio[large] weights[large] = test[large] * np.sin(ratio) / ratio else: weights = test * np.sin(ratio) / ratio return weights
[docs] def psi_deriv(self, z): """ The derivative of Andrew's wave psi function Notes ----- Used to estimate the robust covariance matrix. """ test = self._subset(z) return test * np.cos(z / self.a)
# TODO: this is untested
[docs] class TrimmedMean(RobustNorm): """ Trimmed mean function for M-estimation. Parameters ---------- c : float, optional The tuning constant for Ramsay's Ea function. The default value is 2.0. See Also -------- statsmodels.robust.norms.RobustNorm """ continuous = 0 redescending = "hard" def __init__(self, c=2.): self.c = c def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ if inplace: self.c = c return self else: return self.__class__(c=c)
[docs] def max_rho(self): return self.rho(self.c)
def _subset(self, z): """ Least trimmed mean is defined piecewise over the range of z. """ z = np.asarray(z) return np.less_equal(np.abs(z), self.c)
[docs] def rho(self, z): r""" The robust criterion function for least trimmed mean. Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray rho(z) = (1/2.)*z**2 for \|z\| <= c rho(z) = (1/2.)*c**2 for \|z\| > c """ z = np.asarray(z) test = self._subset(z) return test * z**2 * 0.5 + (1 - test) * self.c**2 * 0.5
[docs] def psi(self, z): r""" The psi function for least trimmed mean The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z for \|z\| <= c psi(z) = 0 for \|z\| > c """ z = np.asarray(z) test = self._subset(z) return test * z
[docs] def weights(self, z): r""" Least trimmed mean weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray weights(z) = 1 for \|z\| <= c weights(z) = 0 for \|z\| > c """ z = np.asarray(z) test = self._subset(z) return test
[docs] def psi_deriv(self, z): """ The derivative of least trimmed mean psi function Notes ----- Used to estimate the robust covariance matrix. """ test = self._subset(z) return test
[docs] class Hampel(RobustNorm): """ Hampel function for M-estimation. Parameters ---------- a : float, optional b : float, optional c : float, optional The tuning constants for Hampel's function. The default values are a,b,c = 2, 4, 8. See Also -------- statsmodels.robust.norms.RobustNorm """ continuous = 1 redescending = "hard" def __init__(self, a=2., b=4., c=8.): self.a = a self.b = b self.c = c def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ a = c / 4 b = c / 2 if inplace: self.c = c self.a = a self.b = b return self else: return self.__class__(a=a, b=b, c=c)
[docs] def max_rho(self): return self.rho(self.c)
def _subset(self, z): """ Hampel's function is defined piecewise over the range of z """ z = np.abs(np.asarray(z)) t1 = np.less_equal(z, self.a) t2 = np.less_equal(z, self.b) * np.greater(z, self.a) t3 = np.less_equal(z, self.c) * np.greater(z, self.b) return t1, t2, t3
[docs] def rho(self, z): r""" The robust criterion function for Hampel's estimator Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray rho(z) = z**2 / 2 for \|z\| <= a rho(z) = a*\|z\| - 1/2.*a**2 for a < \|z\| <= b rho(z) = a*(c - \|z\|)**2 / (c - b) / 2 for b < \|z\| <= c rho(z) = a*(b + c - a) / 2 for \|z\| > c """ a, b, c = self.a, self.b, self.c z_isscalar = np.isscalar(z) z = np.atleast_1d(z) t1, t2, t3 = self._subset(z) t34 = ~(t1 | t2) dt = np.promote_types(z.dtype, "float") v = np.zeros(z.shape, dtype=dt) z = np.abs(z) v[t1] = z[t1]**2 * 0.5 # v[t2] = (a * (z[t2] - a) + a**2 * 0.5) v[t2] = (a * z[t2] - a**2 * 0.5) v[t3] = a * (c - z[t3])**2 / (c - b) * (-0.5) v[t34] += a * (b + c - a) * 0.5 if z_isscalar: v = v[0] return v
[docs] def psi(self, z): r""" The psi function for Hampel's estimator The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z for \|z\| <= a psi(z) = a*sign(z) for a < \|z\| <= b psi(z) = a*sign(z)*(c - \|z\|)/(c-b) for b < \|z\| <= c psi(z) = 0 for \|z\| > c """ a, b, c = self.a, self.b, self.c z_isscalar = np.isscalar(z) z = np.atleast_1d(z) t1, t2, t3 = self._subset(z) dt = np.promote_types(z.dtype, "float") v = np.zeros(z.shape, dtype=dt) s = np.sign(z) za = np.abs(z) v[t1] = z[t1] v[t2] = a * s[t2] v[t3] = a * s[t3] * (c - za[t3]) / (c - b) if z_isscalar: v = v[0] return v
[docs] def weights(self, z): r""" Hampel weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray weights(z) = 1 for \|z\| <= a weights(z) = a/\|z\| for a < \|z\| <= b weights(z) = a*(c - \|z\|)/(\|z\|*(c-b)) for b < \|z\| <= c weights(z) = 0 for \|z\| > c """ a, b, c = self.a, self.b, self.c z_isscalar = np.isscalar(z) z = np.atleast_1d(z) t1, t2, t3 = self._subset(z) dt = np.promote_types(z.dtype, "float") v = np.zeros(z.shape, dtype=dt) v[t1] = 1.0 abs_z = np.abs(z) v[t2] = a / abs_z[t2] abs_zt3 = abs_z[t3] v[t3] = a * (c - abs_zt3) / (abs_zt3 * (c - b)) if z_isscalar: v = v[0] return v
[docs] def psi_deriv(self, z): """Derivative of psi function, second derivative of rho function. """ a, b, c = self.a, self.b, self.c z_isscalar = np.isscalar(z) z = np.atleast_1d(z) t1, _, t3 = self._subset(z) dt = np.promote_types(z.dtype, "float") d = np.zeros(z.shape, dtype=dt) d[t1] = 1.0 zt3 = z[t3] d[t3] = -(a * np.sign(zt3) * zt3) / (np.abs(zt3) * (c - b)) if z_isscalar: d = d[0] return d
[docs] class TukeyBiweight(RobustNorm): """ Tukey's biweight function for M-estimation. Parameters ---------- c : float, optional The tuning constant for Tukey's Biweight. The default value is c = 4.685. Notes ----- Tukey's biweight is sometime's called bisquare. """ continuous = 2 redescending = "hard" def __init__(self, c=4.685): self.c = c def __repr__(self): return f"{self.__class__.__name__}(c={self.c})"
[docs] @classmethod def get_tuning(cls, bp=None, eff=None): """Tuning parameter for given breakdown point or efficiency. This currently only return values from a table. Parameters ---------- bp : float in [0.05, 0.5] or None Required breakdown point Either bp or eff has to be specified, but not both. eff : float or None Required asymptotic efficiency. Either bp or eff has to be specified, but not both. Returns ------- float : tuning parameter. """ if ((bp is None and eff is None) or (bp is not None and eff is not None)): raise ValueError("exactly one of bp and eff needs to be provided") if bp is not None: return _tables.tukeybiweight_bp[bp] elif eff is not None: return _tables.tukeybiweight_eff[eff]
def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ # todo : change default to inplace=False, when tools are fixed if inplace: self.c = c return self else: return self.__class__(c=c)
[docs] def max_rho(self): return self.rho(self.c)
def _subset(self, z): """ Tukey's biweight is defined piecewise over the range of z """ z = np.abs(np.asarray(z)) return np.less_equal(z, self.c)
[docs] def rho(self, z): r""" The robust criterion function for Tukey's biweight estimator Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray rho(z) = -(1 - (z/c)**2)**3 * c**2/6 + c**2/6 for \|z\| <= R rho(z) = 0 for \|z\| > R """ subset = self._subset(z) factor = self.c**2 / 6. return -(1 - (z / self.c)**2)**3 * subset * factor + factor
[docs] def psi(self, z): r""" The psi function for Tukey's biweight estimator The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z*(1 - (z/c)**2)**2 for \|z\| <= R psi(z) = 0 for \|z\| > R """ z = np.asarray(z) subset = self._subset(z) return z * (1 - (z / self.c)**2)**2 * subset
[docs] def weights(self, z): r""" Tukey's biweight weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray psi(z) = (1 - (z/c)**2)**2 for \|z\| <= R psi(z) = 0 for \|z\| > R """ z = np.asarray(z) subset = self._subset(z) return (1 - (z / self.c)**2)**2 * subset
[docs] def psi_deriv(self, z): """ The derivative of Tukey's biweight psi function Notes ----- Used to estimate the robust covariance matrix. """ subset = self._subset(z) return subset * ((1 - (z/self.c)**2)**2 - (4*z**2/self.c**2) * (1-(z/self.c)**2))
class TukeyQuartic(RobustNorm): """ Varinant of Tukey's biweight function with power 4 for M-estimation. Parameters ---------- c : float, optional The tuning constant for Tukey's Biweight. The default value is c = ???. Notes ----- This is a variation of Tukey's biweight (bisquare) function where the weight function has power 4 instead of power 2 in the inner term. """ continuous = 2 redescending = "hard" def __init__(self, c=3.61752, k=4): # TODO: c needs to be changed if k != 4 # also, I think implementation assumes k is even integer self.c = c self.k = k def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ if inplace: self.c = c return self else: return self.__class__(c=c, k=self.k) def max_rho(self): return self.rho(self.c) def _subset(self, z): """ TukeyQuartic is defined piecewise over the range of z """ z = np.abs(np.asarray(z)) return np.less_equal(z, self.c) def rho(self, z): r""" The robust criterion function for TukeyQuartic norm. Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray rho(z) = 1 / 2 * z**2 * (1 - 4 / (k + 2) * x**k + 1 / (k + 1) * x**(2 * k)) for \|z\| <= c rho(z) = 0 for \|z\| > c where x = z / c """ c = self.c k = self.k subset = self._subset(z) x = z / c rhoc = 1 / 2 * c**2 * (1 - 4 / (k + 2) + 1 / (k + 1)) # integral x (1 - x^k)^2 dx = # 1/2 x^2 (x^(2 k)/(k + 1) - (4 x^k)/(k + 2) + 1) + constant # integral x (1 - (x/c)^k)^2 dx = # 1/2 x^2 (-(4 (x/c)^k)/(k + 2) + (x/c)^(2 k)/(k + 1) + 1) + # constant rh = ( subset * 1 / 2 * z**2 * (1 - 4 / (k + 2) * x**k + 1 / (k + 1) * x**(2 * k)) + # noqa (1 - subset) * rhoc ) return rh def psi(self, z): r""" The psi function of TukeyQuartic norm. The analytic derivative of rho. Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z*(1 - (z/c)**4)**2 for \|z\| <= c psi(z) = psi(c) for \|z\| > c """ k = self.k z = np.asarray(z) subset = self._subset(z) return z * (1 - (z / self.c)**k)**2 * subset def weights(self, z): r""" TukeyQuartic weighting function for the IRLS algorithm. The psi function scaled by z. Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray psi(z) = (1 - (z/c)**4)**2 for \|z\| <= R psi(z) = 0 for \|z\| > R """ k = self.k z = np.asarray(z) subset = self._subset(z) return (1 - (z / self.c)**k)**2 * subset def psi_deriv(self, z): """ The derivative of the TukeyQuartic psi function. Notes ----- Used to estimate the robust covariance matrix. """ c = self.c k = self.k subset = self._subset(z) x = z / c # d/dx(x (1 - (x/c)^k)^2) = -(1 - (x/c)^k) (2 k (x/c)^k + (x/c)^k - 1) return subset * (1 - x**k) * (1 - (2 * k + 1) * x**k) class StudentT(RobustNorm): """Robust norm based on t distribution. Rho is a rescaled version of the t-loglikelihood function after dropping constant terms. The norms are rescaled so that the largest weights are 1 and the second derivative of the rho function at zero is equal to 1. The maximum likelihood estimator based on the loglikelihood function of the t-distribution is available in ``statsmodels.miscmodels`, which can be used to also estimate scale and degrees of freedom by MLE. """ continuous = 2 redescending = "soft" def __init__(self, c=2.3849, df=4): self.c = c self.df = df def _set_tuning_param(self, c, inplace=False): """Set and change the tuning parameter of the Norm. Warning: this needs to wipe cached attributes that depend on the param. """ if inplace: self.c = c return self else: return self.__class__(c=c, df=self.df) def max_rho(self): return np.inf def rho(self, z): """ The rho function of the StudentT norm. Parameters ---------- z : ndarray 1d array Returns ------- rho : ndarray rho(z) = (c**2 * df / 2.) * log(df + (z / c)**2) - const The ``const`` shifts the rho function so that rho(0) = 0. """ c = self.c df = self.df z = np.asarray(z) const = (c**2 * df / 2.) * np.log(df) if df != 0 else 0 return (c**2 * df / 2.) * np.log(df + (z / c)**2) - const def psi(self, z): """ The psi function of the StudentT norm. The analytic derivative of rho. Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray psi(z) = z """ c = self.c df = self.df z = np.asarray(z) return z * df / (df + (z / c)**2) def weights(self, z): """ The weighting function for the IRLS algorithm of the StudentT norm. The psi function scaled by the input z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray weights(z) = np.ones(z.shape) """ c = self.c df = self.df z = np.asarray(z) return df / (df + (z / c)**2) def psi_deriv(self, z): """ The derivative of the psi function of the StudentT norm. Returns ------- psi_deriv : ndarray ones(z.shape) Notes ----- Used to estimate the robust covariance matrix. """ c = self.c df = self.df x = np.asarray(z) / c return - 2 * df * x**2 / (df + x**2)**2 + df / (df + x**2)
[docs] class MQuantileNorm(RobustNorm): """M-quantiles objective function based on a base norm This norm has the same asymmetric structure as the objective function in QuantileRegression but replaces the L1 absolute value by a chosen base norm. rho_q(u) = abs(q - I(q < 0)) * rho_base(u) or, equivalently, rho_q(u) = q * rho_base(u) if u >= 0 rho_q(u) = (1 - q) * rho_base(u) if u < 0 Parameters ---------- q : float M-quantile, must be between 0 and 1 base_norm : RobustNorm instance basic norm that is transformed into an asymmetric M-quantile norm Notes ----- This is mainly for base norms that are not redescending, like HuberT or LeastSquares. (See Jones for the relationship of M-quantiles to quantiles in the case of non-redescending Norms.) Expectiles are M-quantiles with the LeastSquares as base norm. References ---------- .. [*] Bianchi, Annamaria, and Nicola Salvati. 2015. “Asymptotic Properties and Variance Estimators of the M-Quantile Regression Coefficients Estimators.” Communications in Statistics - Theory and Methods 44 (11): 2416–29. doi:10.1080/03610926.2013.791375. .. [*] Breckling, Jens, and Ray Chambers. 1988. “M-Quantiles.” Biometrika 75 (4): 761–71. doi:10.2307/2336317. .. [*] Jones, M. C. 1994. “Expectiles and M-Quantiles Are Quantiles.” Statistics & Probability Letters 20 (2): 149–53. doi:10.1016/0167-7152(94)90031-0. .. [*] Newey, Whitney K., and James L. Powell. 1987. “Asymmetric Least Squares Estimation and Testing.” Econometrica 55 (4): 819–47. doi:10.2307/1911031. """ continuous = 1 def __init__(self, q, base_norm): self.q = q self.base_norm = base_norm def _get_q(self, z): nobs = len(z) mask_neg = (z < 0) # if self.q < 0.5 else (z <= 0) # maybe symmetric qq = np.empty(nobs) qq[mask_neg] = 1 - self.q qq[~mask_neg] = self.q return qq
[docs] def rho(self, z): """ The robust criterion function for MQuantileNorm. Parameters ---------- z : array_like 1d array Returns ------- rho : ndarray """ qq = self._get_q(z) return qq * self.base_norm.rho(z)
[docs] def psi(self, z): """ The psi function for MQuantileNorm estimator. The analytic derivative of rho Parameters ---------- z : array_like 1d array Returns ------- psi : ndarray """ qq = self._get_q(z) return qq * self.base_norm.psi(z)
[docs] def weights(self, z): """ MQuantileNorm weighting function for the IRLS algorithm The psi function scaled by z, psi(z) / z Parameters ---------- z : array_like 1d array Returns ------- weights : ndarray """ qq = self._get_q(z) return qq * self.base_norm.weights(z)
[docs] def psi_deriv(self, z): ''' The derivative of MQuantileNorm function Parameters ---------- z : array_like 1d array Returns ------- psi_deriv : ndarray Notes ----- Used to estimate the robust covariance matrix. ''' qq = self._get_q(z) return qq * self.base_norm.psi_deriv(z)
def __call__(self, z): """ Returns the value of estimator rho applied to an input """ return self.rho(z)
[docs] def estimate_location(a, scale, norm=None, axis=0, initial=None, maxiter=30, tol=1.0e-06): """ M-estimator of location using self.norm and a current estimator of scale. This iteratively finds a solution to norm.psi((a-mu)/scale).sum() == 0 Parameters ---------- a : ndarray Array over which the location parameter is to be estimated scale : ndarray Scale parameter to be used in M-estimator norm : RobustNorm, optional Robust norm used in the M-estimator. The default is HuberT(). axis : int, optional Axis along which to estimate the location parameter. The default is 0. initial : ndarray, optional Initial condition for the location parameter. Default is None, which uses the median of a. niter : int, optional Maximum number of iterations. The default is 30. tol : float, optional Toleration for convergence. The default is 1e-06. Returns ------- mu : ndarray Estimate of location """ if norm is None: norm = HuberT() if initial is None: mu = np.median(a, axis) else: mu = initial for _ in range(maxiter): W = norm.weights((a-mu)/scale) nmu = np.sum(W*a, axis) / np.sum(W, axis) if np.all(np.less(np.abs(mu - nmu), scale * tol)): return nmu else: mu = nmu raise ValueError("location estimator failed to converge in %d iterations" % maxiter)

Last update: Jan 20, 2025