statsmodels.discrete.discrete_model.Logit.score_obs¶
- Logit.score_obs(params)[source]¶
Logit model Jacobian of the log-likelihood for each observation
- Parameters:¶
- paramsarray_like
The parameters of the model
- Returns:¶
- jacarray_like
The derivative of the loglikelihood for each observation evaluated at params.
Notes
\[\frac{\partial\ln L_{i}}{\partial\beta}=\left(y_{i}-\Lambda_{i}\right)x_{i}\]for observations \(i=1,...,n\)
Last update:
Dec 16, 2024