statsmodels.discrete.discrete_model.Probit.score

Probit.score(params)[source]

Probit model score (gradient) vector

Parameters:
paramsarray_like

The parameters of the model

Returns:
scorendarray, 1-D

The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at params

Notes

lnLβ=i=1n[qiϕ(qixiβ)Φ(qixiβ)]xi

Where q=2y1. This simplification comes from the fact that the normal distribution is symmetric.