statsmodels.gam.generalized_additive_model.GLMGam.fit¶
-
GLMGam.fit(start_params=
None
, maxiter=1000
, method='pirls'
, tol=1e-08
, scale=None
, cov_type='nonrobust'
, cov_kwds=None
, use_t=None
, full_output=True
, disp=False
, max_start_irls=3
, **kwargs)[source]¶ estimate parameters and create instance of GLMGamResults class
- Parameters:¶
- most parameters are the same as for GLM
- method
optimization
method
The special optimization method is “pirls” which uses a penalized version of IRLS. Other methods are gradient optimizers as used in base.model.LikelihoodModel.
- Returns:¶
- res
instance
of
wrapped
GLMGamResults
- res
Last update:
Jan 07, 2025