statsmodels.genmod.generalized_linear_model.GLM.predict¶
-
GLM.predict(params, exog=
None
, exposure=None
, offset=None
, which='mean'
, linear=None
)[source]¶ Return predicted values for a design matrix
- Parameters:¶
- paramsarray_like
Parameters / coefficients of a GLM.
- exogarray_like,
optional
Design / exogenous data. Is exog is None, model exog is used.
- exposurearray_like,
optional
Exposure time values, only can be used with the log link function. See notes for details.
- offsetarray_like,
optional
Offset values. See notes for details.
- which‘mean’, ‘linear’, ‘var’(
optional
) Statitistic to predict. Default is ‘mean’.
‘mean’ returns the conditional expectation of endog E(y | x), i.e. inverse of the model’s link function of linear predictor.
‘linear’ returns the linear predictor of the mean function.
‘var_unscaled’ variance of endog implied by the likelihood model. This does not include scale or var_weights.
- linearbool
The
linear` keyword is deprecated and will be removed, use ``which
keyword instead. If True, returns the linear predicted values. If False or None, then the statistic specified bywhich
will be returned.
- Returns:¶
An
array
of
fitted
values
Notes
Any exposure and offset provided here take precedence over the exposure and offset used in the model fit. If exog is passed as an argument here, then any exposure and offset values in the fit will be ignored.
Exposure values must be strictly positive.